اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود مقاله اولتــراسوند سه بعـدی

اختصاصی از اینو دیدی دانلود مقاله اولتــراسوند سه بعـدی دانلود با لینک مستقیم و پر سرعت .

 

 

چکیده
هدف در تصویر بردارری 3D مشاهدة ساختار آناتومی به صورت واقعی می باشد. که این امر توسط سیستم های تصویر برداری 2D، نظیر X-ray ,CT, MR و . . . امکان پذیر نبوده است. در این سمینار سعی شده است که این تکنیک که به طور خاص مربوط به تصاویر اولتراسوند می باشد معرفی گردد. لذا تکنیک های دریافت و اسکن تصاویر و سپس بازسازی تصویر 3D مورد بحث قرار خواهند گرفت. سپس جهت ترغیب به ادامه بحث ها مروری بر کار بردهای وسیع این روش تصویر برداری شده است.
متعاقباً تحقق سیستم اولتراسوند 3D آنژیوگرام 3D و ساخت تصاویر 3D کاروتید شرح داده خواهد شد تا نمونه ای عملی از این سیستم معرفی گردد. سپس در تکمیل بخشهای قبلی روشهایی که درمقالات جهت بهبود تصاویر اولتراسوند 3D ارائه شده است، مورد بررسی قرار می گیرد. و در ادامه مشاهدة زمان واقعی1 اولتراسوند 3D توسط کامپیوتر، که روشی جدید می باشد مورد بحث قرار می گیرد وسپس کاربرد اولتراسوند 3D در پزشکی از راه دور 2 و در نهایت آیندة سیستم اولتراسوند 3D آورده شده اند.
امید است که این سمینار زمینة تحقیق را برای علاقمندان به روشهای تصویر برداری و بخصوص تصویر برداری 3D فراهم سازد و دیگر دانشجویان را با این سیستم تصویر برداری که امروزه بسرعت در حال پیشرفت می باشد و به سمت کاربرد روتین در پزشکی هدایت می شود، آشنا نموده باشد.

مقدمه
در 100 سال گذشته تصویر برداری X- ray راهی برای مشاهدة بدن انسان بوده است که توسط آن سایه ای دو بعدی از ساختارهای سه بعدی تولید و روی آشکار ساز دو بعدی مثل فیلم ثبت می گردید.در این روش تمام اطلاعات سه بعدی از بین می رفتند.در 70 سال اول کشف X-ray تمام تلاشها بر این بوده است که تکنیک های تصویر برداری توسعه یابد و اطلاعات سه بعدی درون بدن در تصویر ثبت شده حضور یابد.در 1970 ،CT تولید شد و انقلابی در تشخیص رادیولوژی ایجاد نمود برای اولین بار اطلاعات سه بعدی در تصاویر ثبت شده حاضر گشت،و به صورت سری اسلایدهایی با نقش هایی از بدن(یعنی تصاویر 2-D ) در اختیار پزشکان قرار گرفت.بعلاوه،برای اولین بار در رادیولوژی کامپیوتر در پردازش و نمایش تصویر به صورت متمرکز استفاده شد.اطلاعات 3-D کاربردهای زیادی در تشخیص رادیولوژی دارد.
تاریخچة تصویر برداری اولتراسوند به گذشته برمی گردد.با دنبال کردن کارReid,Wild در دهة 1950 از پیش گامان این رشته هستند کاربرد پزشکی اولتراسوند به آرامی پیشرفت یافت و از سیستم های A-Mode به سیستم هایی تبدیل شد که تصاویر مقطعی شده read-time را از جریان خون و آناتومی ایجاد می نمود.کیفیت تصاویر اولتراسوند جهت مدیریت بهتر تعداد زیاد بیماری ها و تشخیص بهبود یافت.اگر چه تصویربرداری اولتراسوند به علت این که هنوز پتانسیل کامل آن درک نشده است، لطمه دیده است.
توسعة تصویربرداری اولتراسوند 3-D راهی برای نشان دادن معایب تصویربرداری اولتراسوند مرسوم می باشد.روش هایی در توسعه اولتراسوند 3-D مثل 3-D B-Mode، داپلر رنگی و سیستم های داپلر توان حاصل شده است.

 

 

 

 

 

 

 

فصل اول:
معرفی اولتراسوند 3D و
محدودیت های اولتراسوند 2D مرسوم

یکی از معایب تصویربرداری اولتراسوند 2-D وابستگی آن به تجربه و دانسته های تشخیص دهنده می باشد تا مبدل اولتراسوند را هدایت کند تا به طور ذهنی تصویر دوبعدی به سه بعدی تبدیل گرددو تشخیص یا اجرا را به یک روند تداخلی تبدیل نماید.این مشکل مقدمتاً نتیجه بکارگیری تکنیک تصویربرداری 2-D اولتراسوند که به صورت فضایی قابل انعطاف می باشد،برای مشاهده ساختار آناتومی می باشد.
پروسه های درمانی که توسط اولتراسوند هدایت می شوند دچار زیان خواهند شد،زیرا کمی کردن و مونیتو تغییرات کوچک در طول پروسه یا در طول یک دوره از زمان با محدودیت های 2-D مرسوم محدود شده است.و این عمل و اتلاف وقت می باشد و کافی نیست و نیز ممکن است به تصمیم نادرست در خصوص تشخیص،مرحله بندی و در حین عمل جراحی گردد.بعلاوه قرار دادن صفحه تصویر در اولتراسوند 2-D نازک در روی ارگان و تولید دوباره محل تصویر ویژه در زمان دیگر مشکل می باشد.این امرتصاویر D -2 اولتراسوند را برای مطالعات پس از عمل جراحی1 یک تصویربرداری ضعیف تلقی می کند. همچنین، آناتومی بیمار و مسیر هدف گاهی زاویه تصویر را محدود می کند و صفحه تصویر بهینه را برای تشخیص غیر قابل دسترس می سازد.
هدف تصویربرداری اولتراسوند 3-D فائق آمدن بر این محدودیت ها می باشد تا آناتومی بصورت 3-D جهت تشخیص مشاهده گردد و تغییر پذیری تکنیک های مرسوم را کاهش دهد.تصویربرداری اولتراسوند پزشکی به طور مقطعی می باشد بنابراین اطلاعات لازم برای مشاهده سه بعدی را فراهم می سازد.اگر چه،برخلاف تصویربرداری MR و CT،که تصاویر معمولاًدر یک نرخ آهسته از اسلایس های موازی پشت سرهم دریافت می شوند،اولتراسوند تصاویر مقطعی در یک نرخ بالا (16-10 تصویر در ثانیه)را باایجاد می کند و جایگذاری تصاویر قابل انعطاف می باشد.زیرا لزوماًنیازی به دریافت صفحات بصورت پشت سرهم ندارد.علاوه بر مشکلات بی نظیری که فیزیک تصویربرداری اولتراسوند با‌آن روبرو می باشد(لکه1، سایه2، اعوجاج3) نرخ بالای دریافت تصویر و انعطاف پذیری تکنیک مرسوم بر مشکلات غلبه کرده و همچنین باعث به گسترش اولتراسوند از تصاویر 2-D به3-D و4-D شده است.
مقالاتی که ابزار پزشکی تصویربرداری اولتراسوند 3-D را شرح می دهند در خصوص بکارگیری آن در رادیولوژی و echocardiology به چاپ رسیده است.این مقالات نشان می دهند که سیستم های بسیاری جهت تولید تصاویر 3-D اولتراسوند ایجاد شده اند که به سادگی توسط 2 بلوک نشان داده شده در شکل 1 قابل شرح هستند.[1] بلوک ابتدایی مربوط به تکنیک دریافت های متعددی می شود که به کار گرفته شده اند.بلوک دوم مربوط به ثبت تصاویر اولتراسوند قبل از بازسازی می باشد.بلوک سوم بازسازی تصاویر 3-D از تصاویر 2-D ثبت شده است.بلوک انتهایی تکنیک مشاهده برای نمایش تصویر 3-D را مهیا می سازد.تمام بلوک ها در فصول بعدی توصیف می گردند.

 

 

 


شکل1- شماتیک بلوک دیافراگم که چهارمرحله از سیستم تصویر برداری اولتراسوند 3-D را نشان می دهد. مرحله اول مربوط به سخت افزار دریافت در تصویر برداری که برای هدایت مبدل به کار گرفته می شود؛ دوم، روندی که توسط آن تصاویر اولتراسوند 2-D دریافت می شوند؛ سوم، تکنیک های بازسازی به کارگرفته برای دستیابی به تصویر3D: و چهارم، تکنیک نمایش به کار گرفته شده برای مشاهده تصویر3 –D ، می باشند.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


فصل دوم:
تکنیک های دریافت و اسکن

انعطاف پذیری هندسه دریافت تصویر،اولین جزء سیستم در شکل 1 را به دو علت حیاتی می سازد.ابتدا،از آنجائیکه سری تصاویری که برای تصویر گیری3-D مورد نیاز است می تواند در جهات متفاوت گرفته شود،موقعیت نسبی و زاویه آنها باید به درستی شناخته شده باشند تا اعوجاج هندسی رخ ندهد.ثانیاً ،برای جلوگیری از آرتیفکت و اعوجاج مربوط به تنفس،قلب و حرکات غیر اختیاری دریافت تصویر باید به سرعت اجرا گردد یا بطور مناسبی دریافت گردد.سه راه حل پیشنهاد شده است:
دریافت دستی ، موقعیت گذار2های مکانیکی و پروب های 3-D.

 

1-2-دریافت Free – hand:
در دریافت Free-hand،اپراتور یک پروب ترکیبی مجتمع را نگه می دارد و در یک روندمعمول روی آناتومی ای که باید دیده شود، هدایت می نماید.تصاویر با موقعیت ها و زاویه های انتخابی که تحت کنترل اپراتور می باشد،دریافت می شوند.این تکنیک مزیت های ویژه ای را ارائه می دهد زیرا اپراتور می تواند دید و نیز موقعیت بهینه را انتخاب کند .همچنین سطوح پیچیده بیمار را مطابقت می دهد. این مزیت بی نظیر محدودیت جدی ای روی سیستم 3-D اعمال می نماید.
برای بازسازی هندسه صحیح 3-D،زاویه و موقعیت نسبی دقیق پروب اولتراسوند باید برای هر تصویر دریافت شده مشخص باشد.بعلاوه اپراتور باید مطمئن باشد که در طول اسکن آناتومی تحت مشاهده هیچ فاصله ای باقی نماند.سه روش اساسی برای این مشکل ردیابی توسعه یافته است:
موقعیت یاب های اکوستیک،بازوی مفصل بندی شده و الکترو مغناطیسی،همانطور که در شکل 2 نشان داده شده است.

 


شکل 2- شماتیک سه روش پایه برای دریافت موقعیت و جهت مبدل اولتراسوند برای تکنیک دریافت Free- hand: موقعیت یاب های(a)اکوستیک،(b)بازوی مفصل دار،(c) الکترومغناطیسی

 

2-2- موقعیت یاب اکوستیک:
معمولترین روش دریافت تصاویر Free-hand ,3-D بر پایه دامنة اکوستیک می باشد همانطور که در شکل a2 نشان داده شده است.زاویه و موقعیت ترانسدیوسر با نصب سه وسیلة انتشار صوت (برای مثال، شکاف جرقه زن2) موقعیت های ثابت نسبت به هم روی مبدل بدست می آید.یک آرایه از میکروفون ها معمولاً بالای بیمار نصب می گردند.برای بدست آوردن اطلاعات لازم برای بازسازی تصویر 3-D،اپراتور مبدل را آزادانه روی بیمار، در حالیکه وسایل انتشار صوت فعال می باشند حرکت می دهد.با دانستن اطلاعات سرعت صوت در هوا،موقعیت های میکروفون ها و اندازه زمان پرواز3 پالسهای صوتی،موقعیت و زاویه مبدل به طور دائم می تواند مونیتور گردد.بطور واضح،برای بدست آوردن داده های مناسب،میکروفون ها باید در یک روندی در اطراف بیمار قرار داده شوند،که خطوط دید منتشر کننده ها مانع یکدیگر نشوند و به اندازه کافی باید نزدیک مبدل باشند تا قادر باشد پالسهای صوتی را آشکار سازد،همچنین تصحیح مربوط به اختلاف در سرعت صوت بر اثر تغییرات در دما و رطوبت باید صورت گیرد.

 

3-2- موقعیت یاب بازوی مفصل دار:
ساده ترین روش توسط نصب مبدل روی سیستم بازوی مکانیکی با مفاصل قابل حرکت چند گانه بدست می آید،که به اپراتور اجازه میدهد تا مبدل.مر به طریق پیچیده ای هدایت شود و زاویه و دید دلخواه ( در شکل b2 ملاحظه نمائید) بدست آید.
پنانسیومترهایی در مفاصل با بازو های متحرک جاسازی شده اند، بنابراین زاویه مفاصل اندازه گیری و ثبت می شود.توسط این اندازه ها موقعیت و زاویه ترانسویومر می تواند بطور مداوم محاسبه و مونیتور گردد.
این روش به شیوه های متعددی اجرا می شود،مقدمتاً برای اندازه گیری های اکوکاردیوگرافی از حجم بطن،برخی از این اجراها حرکت را به یک محور محدود می نماید تا دقت افزایش یابد،در حالیکه در بقیه آزادی کامل وجود دارد.تا حد ممکن با کوتاه نگه داشتن بازوهای منفرددقت حاصل می گردد،اگر چه حجم تصویر را محدود می نماید.

 

4-2- سنسور میدان مغناطیسی:
روش دیگر استفاده از سیسور مغناطیسی با 6 درجه آزادی می باشد تا موقعیت و وضعیت مبدل را اندازه گیری نماید. این وسیله در شکل c2 نشان داده شده است و شامل یک فرستنده می باشد که در نزدیک بیمار قرار داده می شود و یک دریافت کننده که روی پروب نصب شده است.فرستنده یک میدان مغناطیسی متغیر فضایی را تولید می نماید و دریافت کننده شامل سه سیم پیچ عمودی است که قدرت میدان را اندازه گیری می نماید. با اندازه گیری میدان مغناطیسی محلی موقعیت و زاویة دریافت کننده نسبت به فرستنده قابل تخمین خواهد بود.نوعاً،اندازه های میدان در HZ-100 می باشند،بنابراین مونیتور کردن دائم مبدل اولتراسوند ممکن خواهد بود. اندازة دریافت کننده حدود cm316 می باشد و نصب آسان را برروی مبدل اولتراسوند بدون تداخل با کاربرد معمول آن امکان پذیر می باشد.
اگر چه این روش خیل قابل انعطاف می باشد به بازسازی دقیق3-D ای نیاز دارد که در آن تداخل الکترومغناطیسی حداقل گردد،فرستندة نزدیک به دریافت کننده اندازه گیری های میدان را با S/N کافی انجام می دهد و فرو یا فلزهای با هدایت بالا که میدان مغناطیسی را دچار اعوجاج می نمایند از اطراف دور باشند. این محدودیت ها می تواند با پیش احتیاط های خاصی برطرف می گردد و تصاویر با کیفیت بالا را ارائه نماید،که نوعاً در تصویر برداری مامایی و عروقی به کار می رود.

 

5-2- موقعیت گذارهای مکانیکی :
اگر چه روش اسکن نمودن Free-hand 3-Dقابلیت انعطاف وسیعی را می دهد مشکلات نونیز و فواصل اسکن کیفیت تصویر را مخصوصاً وقتی ساختارهای کوچک در رزولوشن بالا مورد تصویربرداری قرار می گیرند،کاهش میدهد. یک راه جلوگیری از این مشکلات به کارگیری پروب3-D مکانیکی می باشد که سه بعد بدقت با حرکت مکانیکی مبدل حاصل می گردد.همانطور که ترانسدیوسر حرکت داده می شود،تصاویر اولتراسوند 2-D در فواصل فضایی از قبل تعریف شده حاصل می شوند،بنابراین توالی تصویرگیری حجم مورد تصویربرداری را به درستی نمونه برداری می نماید،بدون اینکه هیچ ناحیه ای باقی بماند. یک تعداد از محققین و شرکت های بازرگانی انواع مختلف پروب های مونتاژشدة 3-D مکانیکی را توسعه دادند.این مونتاژ از مبدلهای آرایه ای – خطی یا مکانیکی که در یک مجتمع سوار شده اند،استفاده می نماید و انتقال یا چرخش مبدل توسط یک موتور انجام می شود.وقتی موتور فعال می گردد (معمولاً تحت کنترل کامپیوتر)،مبدل می چرخد یا منتقل می گردد و به سرعت سطح ناحیه جاروب می شود.از آنجائیکه هندسه اسکن از قبل برای ابزار اسکن مشخص شده است،هیچ فریم خارجی مرجعی نیاز نیست.به علت اینکه پارامترهای هندسی مورد نیاز می تواند به خوبی محاسبه گردد،بازسازی مؤثر می باشد.
اندازه سایز این وسایل از مکانیزم های مجتمع کوچک که موتور و مبدل را در هم جای داده و یک پروب مجتمع 3-D را ایجاد می کند،تا مکانیزم هایی که موتور به توسط یک بست خارجی به یک پروب 2-D متصل شده است، می باشند.
پروب های 3-D مجتمع کوچک کاربرد آسانی را برای کاربر فراهم می کند اگر چه به کارگیری آنها نیاز به خریداری سیستم اولتراسوند خاص دارد. وسایل خارجی که منتج به دستگاههای bulkier شده اند، اما با مبدل های 2-D موجود،نیاز به خرید یک ماشین جدید گران برای رسیدن به قابلیت تصویرگیری3-D را دارد. این روش تصویرگیری 3-D توسط سه نوع حرکت اساسی اجرا می شوند که در شکل 3 نشان داده شده است. اسکن خطی، Fan و گردشی.

 



شکل 3- شماتیک سه نوع حرکت پایه که در سیستم های اولتراسوند3-D اسکن مکانیکی
استفاده می شود: (a)خطی، (b)Fan ،(c)گردشی
1-5-2- اسکن خطی
در این روش مبدل اولتراسوند مرسوم روی یک پیچ هدایت کننده نصب شده است که با موتور حرکت می کند(شکل a3).گردش پیچ هدایت کننده مبدل را در یک مود خطی حرکت می دهد،که موازی با پوست بیمار است و عمود بر صفحة تصویر.مبدل می تواند برای تصویرگیری رنگی داپلر استفاده گردد. همچنین،فرکانس نمونه برداری فضایی دریافت تصویر(مثلاً پله ای یا فواصل نمونه برداری)، می تواند بر پایة رزولوشن ارتفاع1 مبدل باشد، بنابراین ناحیه مورد تصویربرداری از یک عمق خاص به طور صحیح نمونه برداری می گردد. از آنجائیکه تصاویر 2-D دریافت شده موازی یکدیگر هستند و با فواصل از پیش تعیین شده جدا شده اند،بازسازی به طور بسیار مؤثری می تواند انجام گردد Downey یک سیستم اسکن خطی را نشان می دهد که درت آن تصویر3-D برای مشاهده کمتر از 5/0 ثانیه بعد از دریافت 200 تصویر،قابل دسترس می باشد که هر کدام از آنها 352*356 پیکسل می باشند.
کاربردهای موفق اسکن خطی برای تصویر برداری عروق با به کارگیری Bmode،داپلر رنگی و تصویربرداری داپر توان گزارش شده اند.این نتایج مزیت های انعطاف پذیر بودن را که توسط نمونه برداری فضایی خطی ارائه میگردد را نشان می دهد و نزول اطلاعات تصاویر3-D را حداقل می نماید.بقیه از این روش برای اکوکاردیوگرافی استفاده می کنند. که در آن از صفحه اسکن افقی استفاده می گردد. تصویر 3-D به عنوان یک دسته از صفحات تولید شده توسط عقب نشینی مکانیکی پروب حاصل می گردند.
( تکنیک Pullback).

 

2-5-2- اسکن Fan :
در این هندسه اسکن،مبدل(و بنابراین صفحه تصویربرداری) در حول یک محور در روی مبدل می چرخد،همانطور که در شکل b3 نشان داده شده است.این نتایج در یک اسکن زاویه ای صفحات Fan را ایجاد می کند،که در آن جدا سازی زاویه ای از پیش تعیین شده مورد نیاز است.در سیستم هایی که مونتاژ خارجی دارند،مبدل در طول پوست حرکت نمی کند ولی در اتصال با پوست یک لو را ایجاد می کند. این روش ساده طراحی فشرده ای را برای مجتمع های خارجی و مبدل های مجتمع 3-D ارائه می دهد. اجتماع تصویر برداری اکوستیک و Kretztechnik نشان داده اند که مبدلهای مجتمع 3-D برای کاربرد در تصویربرداری مامایی و شکمی استفاده می شوند. کاربردهای موفق در اکوکاردیوگرافی توسط. TomTec Inc با به کارگیری روش transesophageal حاصل شده که در آن صفحه تصویربرداری عمود می باشد.(یعنی موازی با محور پروب) یا افقی،و پروب با یک موتور خارجی با محور گردش در طول محور مرکزی پروب،گردش می کند.
مزیت این تکنیک این است که مکانیزم (وسایل خارجی و هم مجتمع ها) به طور مؤثر کوچک می شوند و هدایت آنها با دست راحت تر میگردد. به خاط اینکه پله های زاویه ای میان صفحات به دست آمده ثابت می باشد،فواصل میان نواحی نمونه برداری شده به عمق بستگی دارد. نزدیک مبدل،جائیکه رزولوشن ارتفاع باریک است،فواصل نمونه برداری کوچک هستند، در حالیکه در میدان دور جائیکه،رزولوشن ارتفاع (elevational) ضعیف است،فواصل نمونه برداری بزرگ هستند.بنابراین رزولوشن در تصویر 3-D همسانگرد1 نیست، اما نزول آن با انتخاب مناسب فاصله زاویه ای اسکن حداقل می‌گردد.

 

3-5-2- اسکن چرخشی :
در این هندسه اسکن،مبدل داخل یک مونتاژ خارجی قرار گرفته که پروب با یک محور گردش در طول محور مرکزی پورب می چرخد ( شکل c3).در این روش،نوک پروب و محل قرار گیری پروب ثابت باقی می ماند و تصاویر دریافت شده از یک حجم سکه ای در یک مود پروانه ای شکل سطح پیمایی می شوند،همانطور که در روش دریافت Fan،پله زاویه ای ثابت است،در یک فاصله نمونه برداری فضایی نتیجه می شود که از محور گردش به دور زیاد می گردد. بنابراین رزولوشن در تصویر 3-D با روند پیچیده ای متفاوت است. عموماً، رزولوشن بطور محوری کاهش یابد،که مربوط به نزول در رزولوشن ارتفاع تصویر 2-D است و همچنین در یک راستای عمود (دور از محور گردش) که مربوط به نمونه برداری فضایی sparser است که از پله زاویه ای ثابت نتیجه می شود،نزول می یابد.
با این روش،صفات دریافت شده در مرکز حجم در طول محور گردش تقسیم می گردند.اگر هر گونه حرکتی در طول اسکن انجام شود و غیر از گردش خواسته شده در حول محور پروب باشد،مربوط به پروب یا بیمار، در آنصورت صفحات دریافت شده موافق نیستند (یعنی تصاویر 0 وo36 مثل هم نیستند) و تصویر در مرکز و در طول محور گردش آرتیفکت خواهد داشت. بعلاوه،هندسه مربوطه صفحة تصویر برداری و محور گردش یابد به درستی شناخته شده باشند تا از آرتیفکت جلوگیری گردد.بویژه شیب یا انحراف از محور گردش صفحه تصویربرداری،باید شناخته شده باشد و اصلاح شود،تا از آرتیفکت های معنی دار در مرکز تصویر جلوگیری گردد.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

فصل سوم:
بازسازی تصویر 3 -D

 

بازسازی تصویر 3-D به نسل 3-D ای اشاره می کند از سری تصاویر 2-D دریافت شده از ساختارهای مورد آزمایش، ایجاد می شوند.این پروسة بازسازی به دو شیوة جداگانه اجر ا می شوند.در ابتدا،سری تصاویر 2-D بخش بندی می شوند تا شکل دلخواه قبل از تصویر 3-D بازسازی گردد.برای مثال برای تصویربرداری اکوکاردیوگرافی برای مرزهای میان حفره های پرخون و بافت قلب بصورت دستی یا اتومات مرزبندی می شوند.از توصیف مرزها،یک مدل سطحی 3-D توسعه یافته و با تکنیک های مختلفی دیده شده است.این روش در تصویربرداری IVUS 3-D1 نیز استفاده می گردد تا مجرای داخل رگ بازسازی گردد.
روش دوم از سری تصاویر 2-D بدست آمده استفاده می کند تا یک حجم 3-D دکارتی و بر پایه وکسل (یعنی،شبکه 3-D) با جایگذاری هر تصویر 2-D بدست آمده در محل صحیح خودش در داخل حجم،ساخته شود.مقادیر سطوح خاکستری وکسل توسط تصاویر 2-D که نمونه گیری نشده اند با دروینابی میان تصاویر مربوطه محاسبه
می گردند.اگر تصاویر حاصله حجم را بدرستی با توجه به تئوری نرخ نایکوسئیت نمونه برداری نماید، در آنصورتaliasing رخ نخواهد داد.
اگر چه،اگر حجم به علت فاصله خیلی بزرگ میان تصاویر بدست آمده به درستی نمونه برداری نشود،اطلاعات تصویر از بین خواهند رفت.بنابراین،با فاصله بندی مناسب تصویرهای دریافتی تمام اطلاعات تصویر 2-D حفظ می گردند و اجازة دید صفحات دو بعدی اصلی و دیگر دیدها را نیز فراهم خواهد کرد.سپس هر بخش بندی ای برای استخراج شکل های مورد نیاز یا جهت اندازه گیری می تواند با تصویر 3-D بر پایة و کسل اجرا گردد. مزیت روش اول این است که مقدار اطلاعات را کاهش می دهد و اجرای 3-D مؤثر را فراهم می نماید.همچنین،تصاویر 3-D با کنتراست افزایش یافته میان ساختارهای بخش شده را ایجاد می کند.این نقش مهم همچنین می تواند یک عیب عمده باشد،زیرا روندبخش بندی اطلاعات ناخواسته را حذف می کند و به طور ساختگی کنتراست تصویر را قابل توجه می کند.
برای جلوگیری از آرتیفکت تصویر پروسة بخش بندی باید دقیق باشد- یک کار مشکل در مواردی که کنتراست تصویر پایین است.عیب دیگر این است که فاز بخش بندی بویژه در نواحی کنتراست تصویر زمان بر می باشد.
در روش دوم،که در آن تصویر 3-D بر پایه وکسل تولید می شود،هیچ زمینه ای در مورد دلخواه بودن اطلاعات وجود ندارد،بنابراین هیچ اطلاعاتی در طول بازسازی 3-D از بین نمی رود.بیان سه بعدی وکسل به تکنیک های اجرای متفاوتی اجازه اجرا میدهد،مثل آنهایی که بر پایة نگاشت بافت1 و ray- casting می باشند.اگر چه این روش منتج به فایلهای دادة بسیاری می شود،که جهت دیدن و اندازه گیری هندسی در زمان واقعی باید اداره گردند.فایلهای داده به بزرگی MB 96 در تصویرگیری 3-D پروستاب جهت هدایت Cryosurgical گزارش شده است.پروسة بازسازی به تداخل هیچ کاربری نیاز ندارد و به راحتی با روش موقعیت گذاره های مکانیکی برای حرکت مبدل اتومات شده است.هندسه اسکن 3-D باید به عنوان یک اولویت شناخته شده باشد،بنابراین محاسبة خیلی از پارامترهای هندسی انجام می شود و زمان بازسازی کوتاه را ایجاد می نماید.
1-3-آرایه های 2-D :
تکنیک های شرح داده شده در بالا تماماً تصاویر 2-D تولید شده،توسط مبدل های اولتراسوند مرسوم با اسکن های 2-D الکترونیکی یا مکانیکی را به کار می گیرند.اطلاعات بعد سوم با حرکت فیزیکی مبدل با بکارگیری ابزار مکانیکی و یا توسط دست اپراتور حاصل می گردد. یک روش متفاوتی توسعه یافته است که از مبدل های،آرایه ای 2-D استفاده می کند. و در شکل 4 به صورت شماتیک نشان داده شده است.

 


شکل 4- شماتیک آرایه 2-D که در سیستم اولتراسوند 3-D Real-time به کار برده می شود.

 

اطلاعات بعد سوم با جایگذاری حرکت فیزیکی مبدل توسط اسکن الکترونیکی حاصل می گردد.در این روش،آرایه 2-D یک پالس اولتراسوند را تولید می کند که از آرایه در یک شکل هرمی مشتق می شود. اکوها برای تولید اطلاعات 3-D بصورت real-time پردازش می شوند.این نمونه از مبدلها،تصاویر 3-D اکوکاردیوگرافیrealtime را ایجاد
می کنند.اگر چه این روش در مراحل اولیه توسعه است و کار زیادی جهت کاربرد روتین آن نیاز می باشد،ولی بخوبی نشان داده می شود که برای اکثر دریافت های تصاویر 3-D اولتراسوند یک روش نهایی می باشد.این یادآوری ای از تغییر تصویربرداری 2-D از مبدلهای مکانیکی به مبدلهای الکترونیکی آرایه ای فازی می باشد.اگر چه، قبل از این که آرایه های 2-D استفاده گردند بر تعدادی از مشکلات باید غلبه نمود،که مربوط به بازده کم ساخت تعداد زیادی از المانهای کوچک،همچنین اتصال و بسته بندی تعداد زیاد سیم ها
می باشند.
اجرای اولترا سوند 3-D :
مشخصات سیستم دریافت تصویر اولتراسوند 3-D در تخمین کیفیت تصویرنهایی بسیار حائز اهمیت می باشد.با این همه تکنیک اجرای انتخاب شده نقش مهم و با گذشت زمان نقش اصلی را در تخمین اطلاعات فرستاده شده به اپراتور در صفحه نمایش تصویر اولتراسوند3-D را ایفا می نماید.تکنیک های متفاوتی برای نمایش تصویر 3-D وجود داد که به سه گروه زیر دسته بندی می شوند :
دید بر پایة سطح، Multi –Plannar و بر پایة حجم می باشند.
عموماً انتخاب بهینه تکنیک اجرا با توجه به کاربردهای کلینیکی مشخص زده می شود.

 

2-3- تکنیک های دید بر پایة سطح :
معمول ترین تکنیک نمایش 3-D بر پایة مشاهدة سطوح ساختارها یا ارگانها می باشند. در این روش،مرحلة بخش یندی یا کلاسه بندی از اجرا پیش قدم هستند.در مرحله اول، اپراتور یا الگوریتم هر وکسل را آنالیز می کند و ساختارهایی را که به آن تعلق دارد را تخمین می زند.الگوریتم ها می تواند به آسانی آستانه گذاری شوند،یا بطور پیچیده تر،برپایة آثار و خواص هندسی بخش های تصویر باشند.همچنین،تکنیک می تواند دستی ،متکی بر اپراتور جهت تخمین مرزهای ساختارها، یا تکنیک های اتومات شده، باشد. وقتی بافت ها یا ساختارها کلاسه بندی شوند دو روش اساسی برای دیدن وجود دارد: Wire –Frames و اجرای سطحی.
Wire –Frame ساده ترین روش است.در این روش،مرزهای میان ساختارها با شبکه ای از خطوط که می تواند در پرسپکتیو 3-D دیده شود،ارائه می گردند.این روش،برای نمایش جنین، ساختارهای متفاوت شکمی، مطرح آندوکارد و اپیکارد(پوشش داخل و خارج قلب)، قلب و زخم های جداری به کار گرفته می شود.
در تکنیک اجرای سطحی ، بیانهای سطحی سایه زده می شوند و حذف می گردند و گاهی اوقات سرنخ های عمق اضافه می گردد. بنابراین هندسه 3-D و توپوگرافی به راحتی درک می شود. گردش اتومات یا حرکت کنترل شده توسط کاربر عموماً برای مشاهده آناتومی از پرسپکتیوهای مختلف توسط اپراتور،مفید است.

 

3-3- دید چند صفحه ای1
مشاهده چند صفحه ای نیاز دارد که یک تصویر بر پایة وکسل 3-D بازسازی گردد و به آسانی توسط الگوریتم نمای قایل دستیابی باشد.اطلاعات تصویرمی تواند با به کارگیری دو تکنیک دیده شود.در ابتدا،ابزار تداخلی کاربرد وکامپیوتر برای اپراتور فراهم شده است تا اجازة انتخاب صفحات را بدهد،شامل شیب،از حجمی برای مشاهده همانطور که تصاویر 2-D اصلاح شده اند.با درونیابی مناسب،این صفحات مشابه به صفحاتی به نظر می رسند که با تصویربرداری اولتراسوند 2-D حاصل می گردند.اغلب سه صفحه قائم به طور همزمان روی صفحه نمایش،همراه اشاره های صفحه به مبدأ های مربوطه و تقاطع های آنها، مشاهده شوند.این اشاره ها جهت یابی صفحات اصلاح شده را سهل تر می کند و به اپراتور کمک می کند تا آزمایش را هدایت کند.این تکنیک به طور موفق در یک سیستم بازرگانی 3-D توسعه یافته توسط Kretztechnile استفاده می گردد.

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله 149  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله اولتــراسوند سه بعـدی
نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد