اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

احتمال

اختصاصی از اینو دیدی احتمال دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 23

 

فهرست مطالب

عنوان صفحه

تاریخچه 1

احتمال 4

احتمال نظری 5

احتمال تجربی 5

احتمال ذهنی 6

محاسبه احتمال 6

جمع حوادث سازگار 7

ضرب حوادث مستقل 7

ضرب حوادث وابسته 8

اصول اساسی قانون ضرب 9

جایگشت (تبدیل) 11

ترتیب 13

قاعده ترتیب 14

ترکیب 15

ویژگیهای ترکیب 18

توصیف احتمال یک حادثه 18

خلاصه 19

 

تاریخچه

هیچ کس نمی داند که اعتقاد به شانس برای نخستین بار در چه زمانی و مکانی مطرح شد. در هر حال این امر در دوران ماقبل تاریخ ریشه دارد. با این حال، اسناد کافی نشان می دهد که انسانهای اولیه برای توجیه حوادث تصادفی به وسایلی متوسط می شده اند. برای مثال در آسیای صغیر در آیین پیشگویی مرسوم بود که پنج قاپ را بیندازند. ترتیب ممکن از قاپها، نام خدایی را به همراه داشت (مارکس و لارسن، 1990). برای مثال چنانچه ترتیب (4، 4، 3، 1) به دست می آمد (قاپ شش وجه دارد و به هر وجه آن یک شماره اختصاص داده می شد). گفته می شد زئوس منجی آمده است و چنین ترتیبی پنشانی از قوت قلب تلقی می شد و تفسیر آن این بود که آنچه در سر داری،‌ بی مهابا به انجام برسان. یا اگر ترتیب 4، 4، 4، 6، 6 ظاهر می شد معنای آن این بود که در خانه ات بمان و به هیچ کجا مرو.

به تدریج پس از گذشت هزاران سال، تاس جانشین قاپ شد. در مقبره های مصر که 2000 سال پیش از میلاد مسیح ساخته شده اند، تاسهای سفالی به دست آمده اند. متداول ترین تاس بازی آن زمان هازاد نام داشت. هازاد توسط سربازانی که از جنگهای صلیبی بازگشتند، به اروپا آورده شد. ورق برای نخستین بار در قرن چهاردهم رواج پیدا کرد.

مورخان در مورد این که اعتقاد به احتمال شروع نامشخصی دارد اتفاق نظر دارند. شاید دلیل این امر ناسازگاری آن با عامل بارز موثر در تحول فرهنگ غرب، یعنی فلسفه یونان و خداشناسی مسیحیان در صدر مسیحیت باشد. یونانیان به عقیده شانس اکتفا می کدرند در صورتی که مسیحیان چنین اعتقادی نداشتند. در قرن شانزده احتمال سر از خاک برداشت. سازماندهی و احیا آن توسط جرولامو کاردان انجام گرفت. علاقه کاردان که ظاهراً تحصیلاتی در رشته پزشکی داشت، به قوانین احتمال، ناشی از میل وافر او به قمار بود. او در صدد دستیابی به یک الگوی ریاضی بود تا با کک آن بتواند حوادث اتفاقی را تشریح کند. آنچه که او سرانجام تدوین کرد تعریف کلاسیک احتمال است. به این صورت که در صورتی که تعداد نتایج ممکن حادثه ای که همه دارای احتمال یکسان هستند را با n نشان دهیم و چنانچه m نتیجه از n نتیجه ممکن اتفاق بیفتد، احتمال آن حادثه مساوی است. برای مثال در صورتی که تاسی بدون اریبی باشد،‌ 6 ممکن (6= n) خواهد شد (نتایج 5 و 6) و احتمال 5 یا بزرگتر از آن مساوی یا خواهد بود.

کاردان ابتدایی ترین اصول احتمال را مطرح کرده بود. الگویی که او کشف کرده بود ممکن است پیش پا افتاده به نظر برسد اما حاکی از گامی عظیم بود. بسیاری از مورخان نقطه آغاز علم احتمال را سال 1654 می دانند. در پاریس قمار باز ثروتمندی به نام شوالیه دمور از چند ریاضی دان برجسته از قبیل بلز پاسکال سوالهایی پرسید که معروفترین آنها درباره نقاط بود.

دو نفر، الف و ب، موافقت می کنند که بدون تقلب مجموعه ای بازی را تا زمانی که یک نفر از آنها شش دست برنده شود، ادامه دهند. هر کدام از این دو نفر بر سر مبلغ یکسانی شرط بندی می کنند با این قصد که برنده کل، تمام مبلغ شرط بندی (بانک) را برنده شود. حال فرض کنید به هر دلیلی این بازیها قبل از موقع پایان پذیرد، مثلا در نقطه یا مرحله ای که فرد الف 5 دست و فرد ب 3 دست برنده شده باشد. در این مرحله یا نقطه از بازی، پول شرط بندی شده چطور باید تقسیم شود؟ پاسخ صحیح این است که فرد الف باید کل مبلغ شرط بندی شده را دریافت کند. چرا مبلغ شرط بندی شده باید به این ترتیب تقسیم شود؟

با طرح سوالهای دمور، حس کنجکاوی پاسکال برانگیخته شد و نظر خود را با پیر فرما، کارمند دولت و احتمالاً برجسته ترین ریاضی دان اروپا، در میان گذاشت. فرما با روی گشاده از نظر پاسکال استقبال کرد و از همان موقع بود که نظریه معروف تناظر پاسکال- فرما نه تنها برای حل مسائل نقاط مطرح شد بلکه شالوده ای برای کارهای اساسی تر گردید.خبر آنچه که فرما و پاسکال یافته بود انتشار یافت و دیگران هم به مطالعه این مساله پرداختند. معروفترین آنها دانشمند و ریاضی دان هلندی کریستیان های جنز است که نام او بیشتر به خاطر کارهایش در نورشناسی و نجوم در خاطرها مانده است. توجه های جنز در همان اوایل کارش به مسائل نقاط جلب شد. وی در سال 1657 کتاب محاسبات در بازیهای احتمالی را منتشر ساخت که قریب 50 سال به عنوان کتاب درسی درباره نظریه احتمال تدریس می شد (لارسن و مارکس، 1990). طرفداران های جنز او را بنیانگذار احتمالات می دانند.


دانلود با لینک مستقیم


احتمال

مقاله آمار و احتمال

اختصاصی از اینو دیدی مقاله آمار و احتمال دانلود با لینک مستقیم و پر سرعت .

مقاله آمار و احتمال


مقاله آمار و احتمال

 لینک پرداخت و دانلود در "پایین مطلب"

 

 فرمت فایل: word (قابل ویرایش و آماده پرینت)

 

 تعداد صفحات:17

 

توزیع دو جمله ای :

اگر آزمایشی دارای ویژگی های زیر باشد ، آزمایش تصادفی دوجمله ای است .

1- آزمایش ها مستقل از یکدیگر تکرار شوند

2- آزمایش ها به تعداد دفعات معین مثلا n  بار تکرار شوند

3- آزمایش تصادفی به دو نتیجة ممکن موفقیت و شکست منجرگردد .

4- احتمال موفقیت ها در همة آزمایش ها ثابت و برابر p  باشد .

مثال 1 :  کدام یک از موارد زیر می تواند به عنوان آزمایش دوجمله ای تلقی شود ؟

الف- نمونه گیری تصادفی از 500 زندانی برای تعیین اینکه آیا آنها قبلا در زندان بوده اند یا خیر .

ب- نمونه گیری تصادفی از 500 زندانی برای تعیین طول مدت محکومیت آنها .

حل :

مورد « الف » شرایط لازم برای یک آزمایش دوجمله ای را دارد .

1- آزمایش ها مستقل از یکدیگرند

2- تعداد آزمایش ها ( 500 ) ثابت است

3- هرآزمایش دو نتیجه دارد : یا در زندان بوده یا نبوده

4- احتمال موفقیت ها ( مثلا زندانی نبودن ) در همة آزمایش ها  ثابت است .

مورد « ب » شرایط لازم برای یک آزمایش دوجمله ای را ندارد زیرا طول مدت محکومیت زندانیان متفاوت بوده و بنابراین هرآزمایش بیش از دو نتیجه دارد .

متغیر تصادفی و تابع توزیع احتمال

متغیر تصادفی دو جمله ای عبارت است از تعداد موفقیت ها دریک آزمایش تصادفی دو جمله ای تابع توزیع احتمال دو جمله ای که در آن p  احتمال موفقیت و x تعداد موفقیت ها در n آزمایش باشد به صورت زیر تعریف می شود :

 

نکتة 1 :  توزیع احتمال دوجمله ای دارای دو پارامتر p , n  می باشد .

مثال 2  : یک آزمون چندگزینه ای دارای 30 سئوال ، و هرسئوال دارای 5 جواب ممکن است که یکی از آنها درست می باشد اگر به تمام سئوالات پاسخ داده شود ، چقدر احتمال داردکه دقیقا 4 تای آنها پاسخ درست باشد ؟

حل :

 

امید ریاضی ، واریانس و تابع مولدگشتاور

1-                                              E ( X ) = np

2-               Var ( X ) = npq                      

3-                                          

مثال 3  : احتمال اینکه مشتری ای که وارد فروشگاهی می شود چیزی بخرد 6 /0 است . اگر 10 مشتری وارد فروشگاهی شده باشند امید ریاضی و واریانس تعداد مشتریان خریدکرده چقدر است ؟

حل :

این موقعیت شرایط لازم برای یک آزمایش دوجمله ای را داردکه درآن 6 /0 = p ، 4/0= q و 10 = n  ، پس :

24 /0 = 4 /0 * 6 /0 * 10 = npq = Var ( x)   ،    6 = 6 /0 * 10 = np = E ( X)

مثال 4  : تابع مولدگشتاورهابرای کمیت تصادفی X به صورت10 ( t e 8 /0 +2 /0 ) =M x ( t )

به دست آمده است ضریب تغییرات متغیرتصادفی X  را بیابید .

حل :

   10 = n   ،   8 /0 = p  ،  2 /0  = q  → 10 ( t e 8 /0 + 2 /0 ) = M X ( t ) 

27 /1=  → 6 /1 = 2 /0 * 8 /0 * 10 = npq = Var (x) ،

            8 = 8 /0 * 10 = n .p = μ = E ( X )  

                

توزیع پواسن :

اگر آزمایشی دارای ویژگی های زیرباشد ، آزمایش تصادفی پواسن است .

1- احتمال رخداد بیش ازیک حادثه دریک فاصله زمانی یا مکانی بسیارکوچک تقریبا صفر باشد .

2- احتمال رخداد یک حادثه درهرفاصله زمانی یامکانی متناسب با طول آن فاصله باشد.

3- احتمال رخدادها درفواصل زمانی یا مکانی مستقل ازهم باشد .

متغیر تصادفی و تابع توزیع احتمال :

متغیر تصادفی X که بیانگر رخدادهای تصادفی پواسن دریک فاصله زمانی یامکانی معین است را متغیر تصادفی پواسن گویند اگر متوسط تعداد موفقیت درهرفاصله زمانی یامکانی برابر λ باشد ، تابع احتمال پواسن به صورت زیرتعریف می شود :

               . . . و 2 و 1 و 0 = x         


دانلود با لینک مستقیم


مقاله آمار و احتمال

دانلود فایل پاورپوینت فصل 6 مفهوم احتمال..

اختصاصی از اینو دیدی دانلود فایل پاورپوینت فصل 6 مفهوم احتمال.. دانلود با لینک مستقیم و پر سرعت .

دانلود فایل پاورپوینت فصل 6 مفهوم احتمال..


دانلود فایل پاورپوینت فصل 6  مفهوم احتمال..

پاورپوینت فصل 6  مفهوم احتمال 

فرمت فایل: پاورپوینت

تعداد اسلاید: 15

 

 

 

 

بخشی از متن

در زندگی روز مره از کلماتی مانند شاید ،ممکن است «احتمالا» و... استفاده شود.

علم احتمال اولین بار از بازی های شانس به وجود آمد .

در بازی های شانس ،برد و باخت اهمیت فراوان دارد و حدس زدن مطرح می شود.

واژه احتمال

واژه احتمال را در صحبت های روز مره ی اشخاص زیاد شنیده اید .به طور مثال یکی از دوستانتان به شما می گوید: به احتمال% 99 می آیم . چه قدر منتظر او هستید ؟حتما خیلی زیاد

ویا به این جمله اعتقاد دارید هر چه دانش آموز بیشتر درس بخواند احتمال قبول شدن او بیش تر است. یعنی احتمال کم و زیاد می شود ، پس احتمال را می توان اندازه گرفت.


دانلود با لینک مستقیم


دانلود فایل پاورپوینت فصل 6 مفهوم احتمال..

دانلود فایل پاورپوینت فصل 6 مفهوم احتمال

اختصاصی از اینو دیدی دانلود فایل پاورپوینت فصل 6 مفهوم احتمال دانلود با لینک مستقیم و پر سرعت .

دانلود فایل پاورپوینت فصل 6 مفهوم احتمال


دانلود فایل پاورپوینت فصل 6  مفهوم احتمال

پاورپوینت فصل 6  مفهوم احتمال 

فرمت فایل: پاورپوینت

تعداد اسلاید: 15

 

 

 

 

بخشی از متن

در زندگی روز مره از کلماتی مانند شاید ،ممکن است «احتمالا» و... استفاده شود.

علم احتمال اولین بار از بازی های شانس به وجود آمد .

در بازی های شانس ،برد و باخت اهمیت فراوان دارد و حدس زدن مطرح می شود.

واژه احتمال

واژه احتمال را در صحبت های روز مره ی اشخاص زیاد شنیده اید .به طور مثال یکی از دوستانتان به شما می گوید: به احتمال% 99 می آیم . چه قدر منتظر او هستید ؟حتما خیلی زیاد

ویا به این جمله اعتقاد دارید هر چه دانش آموز بیشتر درس بخواند احتمال قبول شدن او بیش تر است. یعنی احتمال کم و زیاد می شود ، پس احتمال را می توان اندازه گرفت.


دانلود با لینک مستقیم


دانلود فایل پاورپوینت فصل 6 مفهوم احتمال

تحقیق درباره آمار و احتمال

اختصاصی از اینو دیدی تحقیق درباره آمار و احتمال دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 19

 

تخمین پارامترهای احتمال:

با توجه به بحث انجام شده دردرس 3 ، پایه قانون PFS شامل تئوری فازی است که نتایج چندگانه ای دارد . هر نتیجه به یک پارامتراحتمال مربوط می شود . این درس به احتمال تخمین پارامترها درPFS مربوط می شود . در این درس فرض بر این است که هم مقدمه وهم نتیجه mfsبه یک اندازه تعیین کننده هستند واحتیاجی به بهینه سازی بیشتر نمی باشد . طبقه بندی مسئله ها وتخمین mfs دردرس 5 ملاحظه می شود. دردرس16و18و34 پارامترهای احتمال به وسیله تئوری فازی تخمین زده می شوندو برای تخمین احتمالات شرطی ازفرمولهای اماری استفاده می شود (همانطور که دردرس 35 می بینیم ) این روش برای تخمین پارامترهای تخمین است وهمچنین دریاداوری نظریه ها به روش احنمال شرطی اشاره می کند . دراین درس نشان خواهیم دادکه روش احتمال شرطی کلا نتیجه بهینه ودقت مورد تاییدی دردوره های PFS نمی دهد . متناوبا هدف این است که ازحداکثر احتمال درست نمایی معیار ML برای تخمین پارامترهای احتمالی PFS استفاده شود . درادامه این درس الگوهایی وجود دارد . درقسمت (1-4 ) روش احتمال شرطی برای تخمین پارامترهای احتمال در PFSمورد بحث قرار می گیرد. همچنین نشان خواهیم داد هم مسئله ها ی طبقه بندی وهم مسئله های برگشتی که به وسیله پارامترهای احتمال تخمین زده می شوند روش احتمال شرطی غیرواقعی ، غیرواقعی مجانبی ، و ناهماهنگ می باشند که معیارهای ML را پاسخگو نمی باشند . در قسمت (2-4) برای تخمین پارامترهای احتمال در PFS معرفی یک روش جدید هدف می باشد . این روش بر پایه معیار ML می باشد . همچنین در قسمت 2-4نمونه هایی ازبهینه سازی مسئله که نتیجه معیار MLمی باشد مورد بررسی قرار می گیرد . توجه کنید که درتوصیف ازمایشها دردرس5 روش احتمال شرطی وروش ML به صورت تجربی به وسیله ارتباط ان روشها با مسئله های عددی طبقه بندی شده با هم مقایسه می شوند.

1-4 : روش احتمال شرطی

اجازه دهید(X1,Y1) , ... Xn,Yn) ,) نشان دهنده نمونه های تصادفی از جامعه n باشند این نمونه ها برای تخمین Рr(C|A) استفاده می شوند . احتمال شرطی رخداد C به شرط رخدادA به وسیله فرمول اماری زیر محاسبه می شود :

4)

که وظایف مشخصه های XA ,Xc نشان داده می شوند به وسیله :

(2. 4)

(3. 4)

حالافرض کنید به جای پدیده های معمولی Aو C پدیده های فازی جایگزین شوند .

این به این معناست که به وسیله mfs پدیده های A,C به µA وμC تعریف شوندو

به جای XΑ،Xc در معادله 4.1 جایگزین شوند . در نتیجه خواهیم داشت :

(4.4)

این فرمول پایه تعریف احتمال رخداد در پدیده فازی می باشد ( درس 37 ) .

مشتق اول فرمول 4.4 درسهای 35و36 را پدید می آورد .

نتیجه فرمول 4.4 در تخمین پارامترهای شرطی درPFS استفاده می شود . این دیدگاه دردرسهای 16و18و34 دنبال می شود که به روشهای احتمال شرطی در این تز اشاره

می کند .

فرض کنید مجموعه اطلاعاتی شاملn نمونه به صورت ( (i=1,2, ...,n) ( Xi,Yi

برای تخمین پارامترهای احتمال در دسترس باشد همچنین فرض کنید که هم مقدمه وهم نتیجه mfs درسیستم تعیین شده است ونیاز به بهینه سازی بیشتر نمی باشد یعنی فقط پارامترهای احتمال درتخمین باقی بمانند . به نظر منطقی می آید که پارامترهای Pj,k واقعی رابرای تخمین احتمال شرطی پدیده فازی Ck به شرط رخداد پدیده فازی Aj قرار دهیم . اگرچه ورودی X به تعریف بیشتر احتیاج ندارد اما برای نشان دادن غیر عادی بودن محاسبات mfµAj وmfµ¯Aj باید ازفرمول زیراستفاده شود :

(4.5)

بنابراین Pj,k واقعی است و برای تخمین احتمال شرطی پدیده فازی Ck ونشان دادن غیر عادی بودن پدیده فازی Aj باید ازآن استفاده شود .

توجه داشته باشید که PFSs برای نمونه های برگشتی یک قانون پایه دارد که فقط با همان قانون که در پارامترهای شرطی Pj,k استفاده می شود ودرفرمول 4.5 نشان داده شده هیستوگرامهای فازی مورد بحث دردرس 2 را معادل سازی می کند .

درPFS برای نمونه های طبقه بندی درهرطبقه Ck به صورت یک خروجی جدید نشان داده می شود پس فرمول 4.5 به صورت زیر هم نوشته می شود :

(4.6)

عملکرد مشخصه XCk بوسیله فرمول زیر نشان داده می شود :

(4.7)

درتعریف این قسمت ،احتمالات آماری پارامترها تخمین زده می شوند . به PFSs درنمونه های طبقه بندی در تجزیه وتحلیل فرمولهای (4.5) و(4.6) در قسمت (4.1.1) توجه می شود . همچنین در قسمت (4.1.2) درنمونه های برگشتی PFSs بررسی می شود .


دانلود با لینک مستقیم


تحقیق درباره آمار و احتمال