اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود پاورپوینت انواع سیستم های حرارت مرکزی

اختصاصی از اینو دیدی دانلود پاورپوینت انواع سیستم های حرارت مرکزی دانلود با لینک مستقیم و پر سرعت .

دسته بندی : پاورپوینت 

نوع فایل:  ppt _ pptx ( قابلیت ویرایش متن )

فروشگاه فایل » مرجع فایل


 قسمتی از اسلاید متن ppt : 

 

تعداد اسلاید : 10 صفحه

تاسیسات مکانیکی انواع سیستم های حرارت مرکزی انواع سیستم های حرارت مرکزی دسته بندی سیستمهای حرارت مرکزی بر اساس : سیال ناقل حرارت درجه حرارت سیال چگونگی گردش آب نوع منبع انبساط انواع سیستم های حرارت مرکزی از نظر سیال واسطه عبارتند از : 1- حرارت مرکزی با آب گرم 2_ حرارت مرکزی با آب داغ ، 3- حرارت مرکزی با بخار آب ، 4 – حرارت مرکزی با هوای گرم حرارت مرکزی با آب گرم فشار این منبع در حدود فشار جو است دمای آب گرم ناقل نیز با توجه به نقطه جوش آب در ارتفاعی که سیستم کار می کند مشخص می شود . بر حسب چگونگی گردش آب به دو صورت طبقه بندی می شود : سیستم با جریان طبیعی : گردش آب بر اساس نیروی ترموسیفون ناشی از اختلاف وزن مخصوص آب گرم رفت و برگشت و بدون کمک عامل خارجی پمپ صورت می گیرد به دلیل محدود بودن نیروی ترموسیفون و عدم توانایی آن برای مقابله با افت فشارزیاد در مسیر لوله کشی این سیستم تنها برای ساختمان های کوچک قابل استفاده است سیستم با جریان اجباری در این سیستم انرژی لازم برای برای گردش آب و غلبه بر افت فشار های مسیر توسط یک پمپ تامین می گردد لذا سرعت گردش آب بیشتر بوده و اختلاف دمای رفت و برگشت را می توان تقلیل داد حرارت مرکزی با آب داغ دمای آب از حد نقطه جوش آن در فشار جو فراتر می رود بنابراین : سیستم نمی تواند در فشار جو کار کند و باید با تمهیداتی فشار آن را بالا برد تا آب در دماهای بالاتر از 100 درجه بخار نشود . از سیستم منبع انبساط بسته استفاده می کنند⇦ این منابع علاوه بر وظیفه ی جبران نوسانات حجمی آب سیستم مسئولیت ایجاد فشار مناسبی را توسط بالشتکی ازهوا ؛ بخار یا گاز بی اثر مانند ازت که نیمی از حجم منبع را اشغال می کند بر عهده دارند گردش اب در سیستم های حرارت مرکزی با آب داغ حتما به صورت اجباری و توسط پمپ صورت می گیرد فشار سیستم باید به نحوی کنترل شود تا نه از میزان لازم فراتر رفته و به حد خطرناکی برسد و نه آنقدر نزول کند که امکان تبخیر آب فراهم شود این سیستم در تاسیسات بزرگ مورد استفاده قرار می گیرد حرارت مرکزی با بخار در این سیستم ناقل حرارت بخار آب می باشد مقدار حرارتی که توسط بخار حمل می شود نسبت به آب گرم یا آب داغ بسیار قابل ملاحظه است حرارت مرکزی منطقه ای ؛ آسمانخراش ها و پادگان ها و آسمانخراش ها و ساختمان های پراکنده ای که با یک سیستم گرمایش تغذیه می شوند حرارت مرکزی با هوای گرم ناقل حرارت هواست .
گرم کردن هوا به صورت مستقیم در کوره ی هوای گرم یا به صورت غیر مستقیم توسط آب گرم یا بخار ارسالی از دیگ در وسایلی مانند هواساز و یا فن کویل صورت می پذیرد بر حسب چگونگی گردش آب به دو صورت طبقه بندی می شود : گردش طبیعی هوا : نیروی محرک در این سیستم همانا اختلاف وزن مخصوص هوای گرم متصاعد و هوای سرد متنازل می باشد در این سیستم بایستی مقاومت در مسیر کانال کمتر از سیستم اجباری باشد گردش اجباری هوا : در این سیستم نیروی محرک توسط بادزن تامین می شود ترتیبات برگشت آب ( سیستم لوله کشی شوفاژ) سیستم لوله کشی شوفاژ به دو دسته تقسیم می شود : یک لوله ای و دو لوله ای سیستم یک لوله ای : در این سیستم لوله ی رفت و رگشت به هم مربوط بوده و یک لوله برای رفت و برگشت به کار می رود سیستم دو لوله ای : شامل سیستم دو لوله ای با برگشت مست

  متن بالا فقط تکه هایی از محتوی متن پاورپوینت میباشد که به صورت نمونه در این صفحه درج شدهاست.شما بعد از پرداخت آنلاین فایل را فورا دانلود نمایید 

 


  لطفا به نکات زیر در هنگام خرید دانلود پاورپوینت:  توجه فرمایید.

  • در این مطلب، متن اسلاید های اولیه قرار داده شده است.
  • به علت اینکه امکان درج تصاویر استفاده شده در پاورپوینت وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید
  • پس از پرداخت هزینه ،ارسال آنی پاورپوینت خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد
  • در صورت  مشاهده  بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل اسلاید ها میباشد ودر فایل اصلی این پاورپوینت،به هیچ وجه بهم ریختگی وجود ندارد
  • در صورتی که اسلاید ها داری جدول و یا عکس باشند در متون پاورپوینت قرار نخواهند گرفت.
  • هدف اصلی فروشگاه فایل، مرجع فایل کمک به سیستم آموزشی و جمع آوری اطلاعات برای علم آموزان عزیز میباشد .
  • بانک ها از جمله بانک ملی اجازه خرید اینترنتی با مبلغ کمتر از 5000 تومان را نمی دهند، پس تحقیق ها و مقاله ها و ...  قیمت 5000 تومان به بالا میباشد.درصورتی که نیاز به تخفیف داشتید با پشتیبانی فروشگاه درارتباط باشید.

دانلود فایل   پرداخت آنلاین 


دانلود با لینک مستقیم


دانلود پاورپوینت انواع سیستم های حرارت مرکزی

مقاله درباره تاثیر پارامترهای گوناگون و خصوصیات انتقال حرارت خارجی اجزاء توربین

اختصاصی از اینو دیدی مقاله درباره تاثیر پارامترهای گوناگون و خصوصیات انتقال حرارت خارجی اجزاء توربین دانلود با لینک مستقیم و پر سرعت .

مقاله درباره تاثیر پارامترهای گوناگون و خصوصیات انتقال حرارت خارجی اجزاء توربین


مقاله درباره تاثیر پارامترهای گوناگون و خصوصیات انتقال حرارت خارجی اجزاء توربین

لینک پرداخت و دانلود در "پایین مطلب"

 فرمت فایل: word (قابل ویرایش و آماده پرینت)

 تعداد صفحات:130

در این فصل ما بر روی تاثیر پارامترهای گوناگون و خصوصیات انتقال حرارت خارجی اجزاء توربین تمرکز می نماییم.پیشرفتها در طراحی محفظه احتراق منجر به دماهای ورودی توربین بالا تر شده اند که به نوبه خود بر روی بار حرارتی و مولفه های عبور گاز داغ تاثیر می گزارد.دانستن تاثیرات بار حرارتی افزایش یافته از اجزایی که گاز عبور می کند طراحی روشهای موثرسرد کردن برای محافظت از اجزاء امری مهم است.گازهای خروجی از محفظه احتراق به شدت متلاطم می باشد که سطوح و مقادیر تلاطم 20تا 25% در پره مرحله اول می باشد.مولفه های مسیر گاز داغ اولیه ،پره های هادی نازل ثابت و پره های توربین درحال دوران می باشد. شراعهای توربین، نوک های پره، سکوها و دیواره های انتهایی نیز نواحی بحرانی را در مسیر گاز داغ نشان می دهد. برسی های کار بردی و بنیادی در ارتباط با تمام مولفه های فوق به درک بهتر و پیش بینی بار حرارتی به صورت دقیق تر کمک کرده اند . اکثر برسی های انتقال حرارت در ارتباط با مولفه های  مسیر گاز داغ مدل هایی در مقیاس بزرگ هستند که در شرایط شبیه سازی شده بکار می روند تا درک بنیادی از پدیده ها را فراهم سازد. مولفه ها با استفاده از سطوح صاف و منحنی شبیه سازی شده اند که شامل مدل های لبه راهنما و کسکید های[1] ایرفویل های مقیاس بندی شده می باشد. در این فصل، تمرکز بر روی نتایج آزمایشات انتقال حرارت بدست آمده توسط محققان گوناگون روی مولفه های مسیر گاز خواهد بود. انتقال حرارت به پره های مرحله اول در ابتدا تحت تاثیر پارامترهای از قبیل پروفیل دمای خروجی محفظه احتراق،تلاطم زیاد جریان آزاد و مسیر های داغ می باشد .انتقال حرارت به تیغه های روتور مرحله اول تحت تاثیر تلاطم جریان آزاد متوسط تا کم ، جریان های حلقوی نا پایدار ، مسیر های داغ و البته دوران می باشد.

  1. 1.1- سرعت خروجی محفظه احتراق و پروفیل های دما

سطوح تلاطم در محفظه احتراق خیلی مهم هستند که ناشی از تاثیر چشمگیر انتقال حرارت همرفتی به مولفه های مسیر گاز داغ در توربین می باشد. تلاطم تاثیر گزار بر روی انتقال حرارت توربین ها در محفظه احتراق تولید می شود که ناشی از سوخت به همراه گاز های کمپرسور می باشد.آگاهی از قدرت تلاطم تولید شده توسط محفظه احتراق برای طراحان در بر آورد مقادیر انتقال حرارت در توربین مهم است.تلاطم محفظه احتراق کاهش یافته، می تواند منجر به کاهش بار حرارتی در اجزاء توربین و عمر طولانی تر و همچنین کاهش نیاز به سرد کردن می شود. بر سی های انجام شده بر روی اندازه گیری سرعت خروجی محفظه احتراق و پروفیل های تلاطم متمرکز شده است.

Goldstein سرعت خروجی و پروفیل های تلاطم را برای محفظه احتراق مدل نشان داد.Moss وOldfield طیف های تلاطم را در خروجی های محفظه احتراق نشان دادند.هرکدام از بر سی های فوق در فشار اتمسفر و دمای کم انجام شد. اگرچه بدست آوردن بدست آوردن انرازه گیری ها تحت شرایط واقعی مشکل است اما برای یک طراح توربین گاز درک بهبود هندسه محفظه احتراق و پروفیل های گاز خروجی از محفظه امری ضروری است. این اطلاعات به بهبود شرایط هندسه و تاثیرات نیاز های سرد کردن توربین کمک می نماید.

   


اخیرا"،Goebel سرعت محفظه احتراق و پروفیل های تلاطم در جهت موافق جریان یک محفظه احتراق کوچک با استفاده از یک سیستم سرعت سنج دوپلر ولسیمتر(LDV)را اندازه گیری کردنند.آنهاسرعت نرمالیزه شده،تلاطم وپروفیل های دمای موجود برای تمام آزمایش های احتراق را نشان دادند.آنها یک محفظه احتراق از نوع قوطی مانندبکار رفته در موتور های توربین گاز مدرن را استفاده کردند، که در شکل1-2نشان داده شده است.جریان از کمپرسور و از طریق سوراخ ها وارد محفظه احتراق می شود و با سوخت محترق در محل های متفاوت در جهت موافق جریان مخلوط می شود. طراحی محفظه احتراق حداقل مستلزم یک افت فشار از طریق محفظه احتراق تا ورودی توربین است.فرایند محفظه احتراق توسط اختلاط تدریجی هوای فشرده با سوخت در محفظه قوطی شکل کنترل می شود. طراحان محفظه احتراق نوین نیز بر روی مشکلات و مسائل ترکیب و فرایند اختلاط  هوا-سوخت تمرکز می نمایند احتراق تمیز نیز یک مسئله و کانون برای طراحان ناشی از استاندارد های محیطی  الزامی شده توسط دولت فدرال آمریکا و EPA می باشد. با این حال ،طراح محفظه احتراق یک مسئله مورد بحث در این کتاب نمی باشد.

شکل 2-2 تاثیر احتراق بر روی سرعت محوری ،شدت تلاطم محوری،سرعت پیچ وتاب( مارپیچی )و شدت تلاطم پیچ وتاب را نشان  میدهد. تمام سرعت ها توسط خط مرکزی سرعت اندازه گیری شده و در مقابل شعاع نرمالیزه رسم شدند.جریان جرم و فشار هوا برای قدرت های مختلف احتراق اندازه گیری شدند.افزایش جریان سوخت باعث افزایش استحکام احتراق گردید.دمای شعله آدیاباتیک تغییر داده شد.هوای فشرده در یک موتور توربین گاز ناشی از فرایند تراکم پیش گرم می باشد .با این حال،در این برسی،هوا پیش گرم نمی شود.جریان جرم وفشار0.45 kg/s و6.8 اتمسفر بودند.دما های شعله از 71 تا 1980 متغیر بود.تاثیر احتراق شدیدا" آشکار است هنگامی که حالت آتش گرفته را با بقیه حالتهای آتش گرفته مقایسه می نماییم.سسرعت محوری و سرعت پیچ وتاب(مارپیچی) شدیدا"تحت تاثیر احتراق هستند،مقادیر پیچ وتاب توسط احتراق کم میشود.کاهش در پیچ وتاب می تواند در شدت تلاطم مشاهده شود.مقادیر اوج در شدت تلاطم از 10 تا 16% از حالت غیر

   


مشتعل تا کاملا"مشتعل کاهش یافتند.

پروفیل های دما نیز برای حالت های احتراق اندازه گیری شدند.شکل 3-2 تاثیر سوراخ های رقیق سازی را برای دما های آتش زدن مشابه(1200 ) مقایسه مینماید.پروفیل دما نسبتا"صاف و یکنواخت و بدون سوراخ های رقیق سازی ،با مقادیر اوج در خط مرکز می باشد. با این حال ،افزودن سوراخ های رقیق سازی باعث کاهش مقادیر دما بین خط مرکز و لبه ها می گردد.آگاهی از پروفیل دمای خروجی محفظه احتراق یک ضرورت برای محاسبات انتقال حرارت مسیر گاز می باشد.اندازه گیری های پروفبل خروجی دما یک روال تولید کنندگان توربین گاز است.پروفیل های دمای گاز ورودی برای محاسبات انتقال حرارت مولفه مسیر گاز برای براورد کردن دماهای مولفه لازم هستند. مقایسه پروفیل های دمای محفظه احتراق ناشی از منحصر بفرد بودن طراحی امری دشوار است.با این حال ،برسی های فوق آگاهی هایی در مورد سرعت ، شدت تلاطم و پروفیل های دما و تاثیرات احتراق برروی آنها فراهم می کنند. مقیاس اندازه دما یک عامل مهم برای انتقال حرارت مسیر گاز است. با این حال،  برسی های فوق هیچ نوع اطلاعاتی در مورد مقیاس اندازه دما فراهم نمی کنند.


  1. cascades

دانلود با لینک مستقیم


مقاله درباره تاثیر پارامترهای گوناگون و خصوصیات انتقال حرارت خارجی اجزاء توربین

تحقیق در مورد سیستم حرارت مرکزی

اختصاصی از اینو دیدی تحقیق در مورد سیستم حرارت مرکزی دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد سیستم حرارت مرکزی


تحقیق در مورد سیستم حرارت مرکزی

لینک پرداخت و دانلود در "پایین مطلب"

فرمت فایل: word (قابل ویرایش و آماده پرینت)

تعداد صفحات: 40

 

اساس کار سیستم حرارت مرکزی بر این است که حرارت از یک منبع انرژی به قسمتهای مختلف ساختمان انتقال می یابد. برای انتقال حرارت وجود سیال واسطه ای چون آب، بخار، هوا و روغن لازم است که ناقل حرارت بین منبع انرژی و دستگاههای گرم کننده باشد.

سیال با دریافت حرارت از منبع انرژی حرارتش بالا می رود و در تبادل کننده، گرمای خود را به محل (اطاق و سایر قسمت ها) میدهد و سرد می شود و مجدداً برای کسب حرارت به منبع برمیگردد. سیستم های مختلف حرارت مرکزی عبارتند از:

حرارت مرکزی با آب (گرم – داغ)، حرارت مرکزی با بخار، تهویة گرم، تهویة مطبوع و حرارت مرکزی تشعشعی:


دانلود با لینک مستقیم


تحقیق در مورد سیستم حرارت مرکزی

نقطه ذوب درجه حرارتی است که در آن درجه حرارت

اختصاصی از اینو دیدی نقطه ذوب درجه حرارتی است که در آن درجه حرارت دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 4

 

نقطه ذوب درجه حرارتی است که در آن درجه حرارت، ماده جامد به مایع تبدیل شود (درجه حرارتی که در آن فشار بخار مایع با جامد برابر گردد). در تمام مدت ذوب درجه حرارت ثابت میماند و در این درجه حرارت دو فاز در حال تعادل هستند. وجود ناخالصی در یک ماده، نقطه ذوب آنرا پایین می آورد و مخلوط دو ماده، دارای نقطه ذوبی پایین تر از هر کدام از دو ماده اولیه است.

دامنه ذوب، دمائی است که ترکیب شروع به مایع شدن میکند تا دمایی که به طور کامل مایع میشود. ترکیب خیلی خالص دامنه ذوب 5/0 درجه یا کمتر دارد. دامه ذوب ترکیبات خالص معمولی 2-1 درجه است.

خلوص ترکیب از دو طریق مشخص میشود: اول اینکه ماده خالصتر نقطه ذوب بالاتری دارد، دوم اینکه ماده خالصتر دامنه ذوب کمتری دارد یعنی بین درجه حرارت شروع و پایان ذوب اختلاف کمتری وجود دارد.

تعیین نقطه ذوب صحیح یک ترکیب آلی احتیاج به ماده کافی دارد تا با سرد و گرم کردنهای متناوب بتوان در بین فازهای مایع و جامد تعادل برقرار کرد و درجه حرارت آنرا اندازه گرفت. مقدار ماده ای که برای این عمل لازم است غالبا بیشتر از مقداری است که شیمیدان در دسترس دارد. از اینرو روشهای میکرو که چندان دقیق نیستند ولی احتیاج به مقدار ناچیزی از نمونه دارند و آسان هم هستند توسعه یافته اند. یکی از متداولترین روشها، استفاده از لوله مویین است. در کلیه روشهای میکرو نقطه ذوب را به صورت حدود تغییرات ذوب اندازه میگیرند. این حدود شامل درجه حرارتی است که عمل ذوب نمونه شروع میشود و بعد خاتمه می یابد.

 

در اندازه گیری نقطه ذوب با لوله مویین از گرم کن های گوناگونی استفاده میشود. این گرم کن ها از یک بشر ساده که محتوی مایعی با نقطه جوش بالاست و با چراغ گاز گرم و با دست همزده میشود، شروع شده و به وسایل کاملی میرسد که با الکتریسیته گرم میشود و بطور مکانیکی به هم میخورد.

/شکل برخی از دستگاههای اندازه گیری نقطه ذوب

 

بخش عملی

تعیین نقطه ذوب یک نمونه

مقدار کمی از نمونه پودر شده را در روی یک شیشه ساعت کوچک بگذارید (در صورتی که نمونه به صورت پودر نباشد با هاون چینی آنرا کاملا پودر کنید)، یک لوله مویین کاملا تمیز برداشته و به وسیله شعله یک طرف آنرا کاملا مسدود نمائید و چند بار نوک باز لوله مویین را آهسته به داخل جسم جامد بزنید. با برگرداندن لوله و با زدن سریع انتهای بسته لوله بر روی یک سطح محکم میتوان جسم جامد را به طرف انتهای بسته لوله هدایت کرد. جسم باید در انتهای بسته لوله کاملا متراکم شود. بهترین راه انجام این کار آن است که در خاتمه لوله مویین را از درون یک قطعه لوله شیشه ای بزرگتر که تقریبا به طول 60 سانتیمتر باشد، بر روی سطح محکمی رها کنید. نمونه باید به اندازه ای باشد که پس از عمل تراکم لوله مویین را تا عمق 3-2 میلی متر پر کند. این مقدار نباید بیشتر باشد.  لوله مویین را به وسیله یک بند لاستیکی کوچک به گرماسنج متصل کنید. خود نمونه باید در مجاورت حباب گرماسنج باشد و بند لاستیکی در بالاترین جا تا از سطح مایع داغ دور باشد. سپس گرماسنج را به کمک چوب پنبه سوراخداری که یک طرف آن بریده شده درداخل گرمکن قرار دهید (مطابق شکل زیر). منظور از این بریدگی آن است که درجات گرماسنج در آن حدود آشکار شوند و همچنین دستگاه یک سیستم باز باشد. (احتیاط: هرگز نباید یک سیستم بسته را حرارت داد.) با استفاده از حرارت یک چراغ کوچک بونزن به آرامی درجه حرارت مایعی را که باید گرم شود بالا ببرید (حدود 2 درجه در دقیقه) درجه ای را که ابتدا عمل ذوب مشاهده میشود و همچنین درجه ای را که در آن آخرین قسمت جامد ذوب میشود را یادداشت کنید.

/شکل: نمای نزدیک چگونگی بستن لوله مویین به دماسنج و چگونگی برش چوب پنبه

1- مخزن دماسنج

2- محل نمونه

3- مایعی با نقطه جوش بالا

4- بند لاستیکی

5- چوب پنبه برش داده شده

 


دانلود با لینک مستقیم


نقطه ذوب درجه حرارتی است که در آن درجه حرارت

تحقیق درمورد حرارت و الکترومغناطیس

اختصاصی از اینو دیدی تحقیق درمورد حرارت و الکترومغناطیس دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 64

 

حرارت و انرژی الکترومغناطیسی

خورشید مهمترین منبع انتشار امواج الکترومغناطیسی مورد نیاز در سنجش از راه دور است. تمامی موارد در درجه حرارت بالاتر از صفر مطلق (273- درجه سانتی گراد) امواج الکترومغناطیسی ساطع می کنند. میزان انرژی ساطع شده از هر ماده تابعی از دمای سطحی ماده است. این خاصیت توسط قانون استفن – بولتزمن بیان شده است که عبارت است از :

W= δT4

W = کل تابش ساطع شده از سطح ماده بر حسب وات بر متر مربع (Wm-2)

δ = ثابت استفن – بولتزمن که برابر با 10-8Wm-2K-4 × 6697/5 است.

T= دمای مطلق (K°) مادهی ساطع کننده بر حسب درجه ی کلوین .

کل انرژی ساطع شده از یک ماده با توان چهارم دمای ماده نسبت مستقیم دارد یعنی با افزایش دما، سرعت تابش ساطع شده از ماده افزایش می یابد. نکته ی مهم آن است که معادله ی بالا برای شرایطی صادق است که ماده به عنوان جسم سیاه رفتار کند. جسم سیاه، جسمی فرضی است که تمام انرژی تابیده شده به آن را جذب و کل آن را ساطع می نماید. همانگونه که کل انرژی ساطع شده از یک جسم با دما تفییر می کند، توزیع انرژی ساطع شده نیز تغییر می یباد. تصویر 1-10 منحنی توزیع طیفی انرژی جسم سیاه با دمای بین 300 تا 6000 درجه ی کلوین و محور Y میزان توان انرژی ساطع شده از جسم سیاه را به فواصل یک میکرومتری طول موج نشان می دهد. مساحت زیر هر منحنی برابر کل تابش ساطع شده است. هر چه دمای جسم تشعشع کننده بیشتر باشد میزان کل تشعشعات ساطع شده از آن بیشتر خواهد بود. همانگونه که منحنی ها نشان می دهند، با افزایش درجه ی حرارت یک جابه جایی به سمت طول موج های کوتاه تر در هر نقطه ی اوج منحنی تشعشات جسم سیاه، دیده می شود. طول موجی که در آن تشعشات جسم سیاه به حداکثر می رسد، مرتبط با درجه ی حرارت آن جسم است که توسط قانون جابه جایی وین محاسبه می شود:

m=λ

Mλ= طول موج حداکثر انرژی ساطع شده ( μm )

A= ثابت وین ( μmK2898)

T= دمای K°

بنابراین برای جسم سیاه ، طول موجی که در آن حداکثر انرژی ساطع می شودف با دمای جسم سیاه نسبت عکس دارد.

معمولاً لامپ هایی از خود نور ساطع می کنند که روی منحنی انرژی ساطع شده از جسم سیاه در حرارت 3000 درجه ی کلوین قرار دارند. بنابراین این گونه لامپ ها نور آبی رنگ کمی از خود خارج می کند و ترتیب طیفی آن ها شبیه خورشید نیست.

حرارت سطح زمین حدود 300 درجه ی کلوین (27 درجه ی سانتی گراد) است. اصولاً حداکثر انرژی ساطع شده از سطح زمین در طول موج حدود 7/9 میکرومتر روی می دهد و چون این تابش ناشی از گرمای زمین است، بنابراین به آن انرژی « مادون قرمز حرارتی » می گویند. این انرژی قابل عکس برداری نیست، اما سنجنده های حرارتی مانند رادیومتر ها و اسکنر ها نسبت به آن حساسند. خورشید حداکثر انرژی را در طول موج 5/0 میکرومتر منتشر می کند و چشمان ما نسبت به این مقدار انرژی و طول موج حساس است، از این رو با وجود نور خورشیدی قارد به رؤیت سطح زمین می باشیم.

سنجش از دور حرارتی

امروزه معلوم شده است داده های حرارتی می توانند مکمل یکدیگر داده های سنجش از دور (داده های انعکاسی) باشند. (Alavi panah، 2001).

در سنجش از دور حرارتی برای تخمین دما از انرژی ساطع شده توسط اشیاء و پدیده ها استفاده می شود. نمودار 2-10 عواملی را که روی دمایی تابشی مؤثرند، نشان می دهد.


دانلود با لینک مستقیم


تحقیق درمورد حرارت و الکترومغناطیس