اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

جدوال انتخاب کنتاکتور بیمتال فیوز برای موتورهائی که به طور ستاره مثلث راه اندازی میشوند

اختصاصی از اینو دیدی جدوال انتخاب کنتاکتور بیمتال فیوز برای موتورهائی که به طور ستاره مثلث راه اندازی میشوند دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 11

 

جدوال انتخاب کنتاکتور بیمتال فیوز برای موتورهائی که به طور ستاره مثلث راه اندازی میشوندجدوال انتخاب کنتاکتور بیمتال فیوز برای موتورهائی که به طور ستاره مثلث راه اندازی میشوند

(دو ضرب) در ولتاژ 380

جریان فیوز

جریان بی متال

جریان کنتاکتور

HP

KW

16

7-10

12

10

7.5

20

10-13

12

13.5

10

25

13-18

16

15

11

32

13-18

16

20

15

40

18-25

25

25

18.5

50-63

23-32

40

30

22

63

30-40

40

40

30

80

38-50

63

50

37

100

48-57

63

60

45

125

57-66

63

75

55

160

75-105

125

100

75

200

95-125

125

125

90

جدول کیلو وات آمپر و فیوز الکتروموتور

فیوز

آمپر

کیلوات

2

0.8

0.25

4

1.2

0.37

4

1.8

0.55

4

2

0.75

4

2.6

1.1

6

3.5

1.5

10

5

2.2

16

6.6

3

20

8.5

4

25

11.5

5.5

35

15.5

11

35

22.5

15

50

30

1

63

36

8.5

63

43

22

80

57

30

100

72

37

125

85

45

160

104

55

200

142

75

225

169

90

250

204

110

300

243

132

355

292

180

جدوال انتخاب کنتاکتور بیمتال فیوز برای موتورهائی که به طور مستقیم راه اندازی میشوند

(تک ضرب) در ولتاژ 380

جریان فیوز

جریان بی متال

جریان کنتاکتور

HP

KW

2

1-1.6

9

0.5

0.37

4

1.6-2.5

9

0.75

.55

4

1.6-2.5

9

1

.75

6

2.5-4

9

1.5

1.1

6

2.5-4

9

2

1.5

8

4-6

9

3

2.2

12

4-6

9

4

3

12

7-10

16

5.5

4

16

10-13

16

7.5

5.5

20

13-15

16

10

7.5

25

18-25

25

13.5

10

25

18-25

25

15

11

40

23-32

40

20

15

40

30-40

40

25

18.5

63

38-50

63

30

22

63

48-57

63

40

30

80

66-80

80

50

37

100

75-105

125

60

45

125

95-125

125

75

55

160

120-160

200

100

75

200

150-200

200

125

90

250

160-250

260

150

110

250

200-315

260

175

132

315

250-400

450

220

160


دانلود با لینک مستقیم


جدوال انتخاب کنتاکتور بیمتال فیوز برای موتورهائی که به طور ستاره مثلث راه اندازی میشوند

مقاله گردشگری در مثلث فرهنگ، اقتصاد و جامعه

اختصاصی از اینو دیدی مقاله گردشگری در مثلث فرهنگ، اقتصاد و جامعه دانلود با لینک مستقیم و پر سرعت .

مقاله گردشگری در مثلث فرهنگ، اقتصاد و جامعه


مقاله گردشگری در مثلث فرهنگ، اقتصاد و جامعه

دانلود مقاله گردشگری در مثلث فرهنگ، اقتصاد و جامعه 9 ص فرمت word 

 

 

 

 

 

 

 

توسعه صنعت توریسم اگر از مهم‌ترین عناصر مورد توجه در سیاستگذاری‌های کشورمان در قرن حاضر نباشد، بی‌شک یکی از پراهمیت‌ترین آنها است. 

توسعه صنعت توریسم اگر از مهم‌ترین عناصر مورد توجه در سیاستگذاری‌های کشورمان در قرن حاضر نباشد، بی‌شک یکی از پراهمیت‌ترین آنها است.

این توسعه مستلزم مهیا شدن محیطی مناسب برای رشد و ایجاد است. ایجاد این محیط مناسب در گرو ایجاد فرهنگ گردشگری و به دنبال آن مناسب‌ترین نوع آن یعنی گردشگری فرهنگی است. اما لازمه ایجاد این فرهنگ، ایجاد ارتباطات اجتماعی است.


دانلود با لینک مستقیم


مقاله گردشگری در مثلث فرهنگ، اقتصاد و جامعه

دانلود تحقیق درباره توابع مثلثاتی 16 ص

اختصاصی از اینو دیدی دانلود تحقیق درباره توابع مثلثاتی 16 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 15

 

ارتفاع مثلث

ALTITUDE OF A Triangle

هر ارتفاع مثلث، پاره خطی است که یک سر آن یک رأس مثلث، و سر دیگر آن، پای عمودی است که از آن رأس بر ضلع مقابل به آن رأس فرود می‎آید؛ مانند ارتفاع هر مثلث، سه ارتفاع دارد، ، و که در یک نقطة مانند به نام مرکز ارتفاعی مثلث همرسند. اندازة ارتفاعهای ، و را بترتیب با ، و نشان می‎دهند.

اصل نامساوی مثلثی

Axiom Triangle Inequality

هر گاه A، B و C سه نقطة دلخواه باشند، آن گاه . تساوی، وقتی برقرار است که سه نقطه روی یک خط راست، و نقطة B بین دو نقطة A و C باشد.

انتقال) توابع مثلثاتی

Axiom Triangle Inequality

برای محاسبة مقادیر نسبتهای مثلثاتی در ربعهای دوم، سوم و چهارم می‎توان از رابطه‎‏های زیر استفاده کرد:

 

توابع کسینوس و سینوس دوره‎ای، با دورة ْ360 هستند:

 

تابع تانژانت دوره‎ای، با دورة ْ180است:

 

همچنین از تبدیلهای زیر نیز می‎توان استفاده کرد:

 

اندازة زاویه

Measure of an angle

نسبت آن زاویه است، به زاویه‎ای که به عنوان واحد زاویه اختیار شده است.

اندازة شعاع کرة محاطی چهار وجهی منتظم

( چهار وجهی منتظم

اندازة شعاع کرة محیطی چهار وجهی منتظم

( چهار وجهی منتظم

اندازة مساحت مثلث

Area of a Triangle

برابر است با نصف حاصلضرب اندازة هر ضلع مثلث در اندازة ارتفاع نظیر آن ضلع. اگر مساحت مثلث ABC را با S نمایش دهیم، داریم:

 

با توجه به این که است، داریم:

 

برای محاسبة مساحت مثلث از دستور که در آن و به دستور هرون Heron مرسوم است، نیز استفاده می‎کنند.

اندازة نیمسازهای زاویه‎های برونی مثلث

Measure of external angle bisectors of triangle

تصفیه: در هر مثلث، مربع اندازة نیمساز هر زاویة برونی، برابر است با حاصلضرب اندازه‎های دو پاره خطی که آن نیمساز بر ضلع سوم پدید می‎آورد، منهای حاصلضرب اندازه‎های دو ضلع آن زاویه.

یعنی اگر در مثلث ABC AD(نیمساز زاویة برونی A باشد داریم:

 

اگر اندازة نیمسازهای زاویه‎ای برونی A، B و C از مثلث ABC را بترتیب با ، d(a و d(b و d(c محیط مثلث را با ‍P2 نشان دهیم، داریم:

 

 

 

اندازة نیمسازهای زاویه‎های برونی مثلث

Measure of internal angle bisectors of triangle

قضیه: در هر مثلث، مربع اندازة نیمساز هر زاویة درونی برابر است با حاصلضرب اندازة دو ضلع آن زاویه، منهای حاصلضرب دو پاره خطی که آن نیمساز بر ضلع سوم پدید می‎آورد. یعنی اگر AD نیمساز زاویة درونی A از مثلث ABC باشد، داریم:

 

اگر اندازة نیمسازهای زاویه‎های درونی A، B و C از مثلث ABC به ضلعهای BC=a ,AC=b و AB=c را بترتیب da، db و dc بنامیم، داریم:

 

 

 

تابع تانژانت

Tangent function

این تابع به صورت ‎tgx = yمی‎باشد. دورة تناوب آن ( است. کافی است نمودار تابع را در فاصلة


دانلود با لینک مستقیم


دانلود تحقیق درباره توابع مثلثاتی 16 ص

مقاله کاربرد مثلث در موسیقی

اختصاصی از اینو دیدی مقاله کاربرد مثلث در موسیقی دانلود با لینک مستقیم و پر سرعت .

مقاله کاربرد مثلث در موسیقی


مقاله کاربرد مثلث در موسیقی

لینک پرداخت و دانلود در "پایین مطلب"

فرمت فایل: word (قابل ویرایش و آماده پرینت)
تعداد صفحات 5

مثلث از ابتدایی ترین اشکال هندسی بوده که انسانها در هنر از آن استفاده میکردند، بدون شک اولین نوع از انواع مثلث هم که در هنر از آن استفاده شده مثلث متساول الاضلاع بوده است. اهرام مصر نمونه بسیاری قدیمی (حدود 2800 سال پیش از میلاد) از کاربری مثلت در هنر معماری قدیم بوده است. نمونه های دیگر از استفاده از مثلث در هنر تمدن های قدیم را می تواند در کاشی کاری های دیواره معابد Pompeii در نپال نیز مشاهده کرد.

معروف است تالس (640-550 سال پیش از میلاد) که پدر ریاضیات، نجوم و فلسفه یونان باستان بوده از شاگردان خود می خواهد که به مصر سفر کنند تا از پیشرفت علوم در آن تمدن اطلاعات لازم را کسب کنند و فیثاغورث (
Pythagoras) از اولین افرادی بوده که این دستور را می پذیرد و به مصر سفر میکند.

فیثاغورث از بنیانگذاران علمی موسیقی در جهان بوده و اغلب از هندسه برای مدل کردن استفاده می کرده، می خواهیم با استفاده از تجربیات او سلسه مطالبی را پیرامون ارتباط موسیقی با علوم هندسه، فیزیک و ریاضی آغاز کنیم.

موسیقی را می توانیم به روشهای مختلف مدل کنیم برای شروع کار ساده ترین روش را انتخاب میکنم که عبارت است از مدل کردن عمودی موسیقی یاهمان هارمونی. این روش مدل کردن به موسیقیدان ها کمک می کند تا هنگام فکر یا گوش کردن به هارمونی تصویر بهتری از نت های موسیقی داشته باشند بخصوص برای نوازندگان سازغیر از پیانو.


دانلود با لینک مستقیم


مقاله کاربرد مثلث در موسیقی

مثلث 9 ص

اختصاصی از اینو دیدی مثلث 9 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 9

 

مثلث

 

مثلث.

مثلث (سه‌گوش) شکلی مسطح است که از اتصال سه نقطه غیرهم‌خط در صفحه به وجود می‌آید. مثلث دارای سه ضلع و سه زاویه است.

مساحت مثلث

مساحت یک مثلث برابر یک دوم طول یک ضلع، ضرب در طول ارتفاع وارد بر آن، یعنی فاصله رأس سوم تا خط شامل ضلع انتخاب‌شده، است.

مساحت هر نوع مثلث بدون دانستن ارتفاع

فرض می‌کنیم a و b و c اضلاع یک مثلث از هر نوع داده شده باشد (خواه قائم الزاویه - متساوی الساقین - مختلف الاضلاع) فرمول زیر مساحت مثلث را یبان می‌کند :

if a+b+c=2p → s2=p(p-a)(p-b)(p-c)→ یعنی →

توان دوم مساحت مثلث از این فرمول یدست می‌آید با یک بار جذر گرفتن از آن مساحت مثلث را خواهیم داشت مرکز دایره محاطی محل برخورد عمود منصف های اضلاع مثلث است.

با دانستن خصوصیات بعضی از خطوط مانند ارتفاع یا عمود منصف و یا میانه میتوانیم به نتایج جالبی در مورد دست پیدا کنیم. برخی از این نتایج را بیان میکنیم: اگر بر سه ضلع مثلث خطوطی را عمود میکنیم به طوریکه این خطوط اضلاع را نصف نمایند.(در واقع عمود منصف اضلاع را رسم میکنیم)در این صورت محل برخورد این سه خط، مرکز دایره ای خواهد بود که مثلث را احاطه میکند . به این دایره، دایره محاطی گویند.این دایره طوری رسم میشود که از سه راس مثلث عبور کند. طبق قضیه فیثاغورث اگر مرکز دایره محاطی روی یکی از اضلاع قرار گیرد آنگاه زاویه مقابل آن ضلع قائم خواهد بود.به عبارتی دیگر مثلث ما قائم الزاویه خواهد بود. اگر مرکز دایره درون مثلث باشد ،مثلث ما یک مثلث حاده خواهد بود و اگر بیرون مثلث باشد، مثلث از نوع منفرجه خواهد بود. ارتفاع مثلث خط راستی است که از یک راس مثلث عبور کرده و بر ضلع مقابل آن راس عمود میشود.ضلعی را که ارتفاع بر آن عمود است را قاعده مثلث گویند.طول ارتفاع ، فاصله بین راس و قاعده نظیر ارتفاع است.اگر سه ارتفاع مثلث را رسم کنیم این سه ارتفاع همدیگر را در داخل مثلث قطع میکنند مگر در حالتی که مثلث ،منفرجه باشد.محل برخورد نیمسازهای مثلث مرکز دایره محیطی است.نیمساز یک زاویه از مثلث خط راستی است که از یک راس مثلث گذشته و آن زاویه را به دو قسمت مساوی تقسیم کند. اگر نیمسازهای سه زاویه مثلث را رسم کنیم این خطوط در نقطه ای درون مثلث همدیگر را قطع خواهند کرد.این نقطه مرکز دایره محیطی مثلث خواهد بود.این دایره درون مثلث قرار دارد به طوریکه اضلاع مثلث، خطوطی مماس بر دایره هستند.میانه یک مثلث خط راستی است که از راس مثلث گذشته و ضلع مقابل آن را به دو قسمت مساوی تقسیم میکند. سه میانه مثلث یکدیگر را در نقطه ای به نام مرکز مثلث قطع میکنند البته این نقطه مرکز ثقل مثلث نیز میباشدهمچنین این نقطه هر میانه مثلث را به نسبت 1 به 2 تقسیم میکند به طوریکه فاصله میان راس مثلث تا این نقطه دو برابر فاصله این نقطه تا نقطه میانی ضلع مقابل راس است.روابط بین ضلع ها در مثلث مجموع هر دو ضلع، بزرگتر از ضلع سوم است. در مثلث هر ضلع، بزرگتر از تفاضل بین دو ضلع دیگر است.روابط بین زوایا مجموع زاویه های داخلی مثلث 180 درجه است. مجموع زاویه های خارجی مثلث 360 درجه است. هر زاویه خارجی برابر مجموع دو زاویه داخلی مجاور آن است.روابط بین ضلع ها و زوایا در مثلث زاویه مقابل به ضلع بزرگتر از زاویه مقابل به ضلع کوچکتر بزرگتر است. ضلع مقابل به زاویه بزرگتر از ضلع مقابل به زاویه کوچکتر بزرگتر است. زوایای مقابل به اضلاع برابر برابرند و برعکس. هر مثلث متساوی الساقین متقارین است. عمود از رأس به قاعده مثلث متساوی الساقین قاعده و زاویه رأس آن را نصف می کند. زوایای قاعده مثلث متساوی الستقین برابرند. در مثلث قائم الزاویه زوایای حاده متمم اند. در مثلث قائم الزاویه متساوی الساقین، زوایای قاعده 45 درجه اند. در مثلث متساوی الاضلاع تمام زوایای داخلی برابرند، هر یک 60 درجه است. مثلثهای متساوی الاضلاع سه محور تقارن دارند. اگر یکی از زوایای مثلث قائم الزاویه ای 30 درجه باشد، ضلع مقابه به آن نصف وتر است.مساحت مثلث = ( قاعده × ارتــــــفاع ) ÷ 2 محیط مثلث = مجموع سه ضلع علم مثلثات بر اساس روابط موجود در مثلث قائم الزاویه تعریف و در علوم مختلف مهندسی بکاربرده میشود.

مثلث متساوی‌الاضلاع

از ویکی‌پدیا، دانشنامهٔ آزاد

مثلث متساوی‌الاضلاع

مثلث متساوی‌الاضلاع یک چندضلعی منتظم است.

ضلع‌ها و نقطه‌ها

۳

نمادهای شلافی

{۳}

نمودار کوکستر–دینکین

گروه متقارن

دوسطحی (D۳)

زاویه داخلی(درجه

°۶۰

مثلث متساوی الاضلاع یا سه‌پهلوبرابر در هندسه به مثلثی گفته می‌شود که سه ضلع آن برابر باشند.

ویژگی‌ها

با فرضِ این‌که درازای اضلاع مثلث متساوی‌الاضلاع باشد، خواهیم داشت:

مساحت:

محیط:

شعاع دایرهٔ محیطی:

شعاع دایرهٔ محاطی:

و ارتفاع: .

این روابط را می‌توان از قضیه فیثاغورس نتیجه گرفت.

یک مثلث متساوی‌الاضلاع ۳ خطّ تقارن دارد.

دایره

پرش به: ناوبری, جستجو

برای دیگر کاربردهای نام دایره به صفحهٔ دایره (ابهام‌زدایی) مراجعه کنید.


دانلود با لینک مستقیم


مثلث 9 ص