اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق شرح کار و ساختمان پمپ های سانتریفوژ گریز از مرکز

اختصاصی از اینو دیدی دانلود تحقیق شرح کار و ساختمان پمپ های سانتریفوژ گریز از مرکز دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق شرح کار و ساختمان پمپ های سانتریفوژ گریز از مرکز


دانلود تحقیق شرح کار و ساختمان پمپ های سانتریفوژ  گریز از مرکز

از دیرباز انسانها نیاز داشته اند که مایعات و بخصوص آب را از محلی به محلی دیگر جابجا کنند کوشش هایی که بشر در این زمینه انجام داد بالاخره به اختراع شکل ھای اولیه پمپ منجر شد که امروزه بقدری گسترده ھستند که حتی ذکر سر فصل و نام آنھا ھم فھرستی طولانی می شود در اینجا نگاھی  به پمپ ھای گریز از مرکز که از جمله پر مصر ف ترین پمپ ھا ھستند و برای انتقال سیال در حجم زیاد ( با دبی بالا ) و فشار کم مورد استفاده اند می پردازیم اولین نمونه ھای پمپ ھا که نیروی محرک آنھا توسط انسان یا حیوانات تامین میشد، توسط مصریان باستان در ١٧ قرن پیش از میلاد مسیح ساخته شد و مورد استفاده قرار گفتند. آنھا توانسته بودند آبرا با پمپ ھای رفت و برگشتی از عمق ۵ متر و ٩١ سانتی متری زمین بیرون بکشند. در یونان باستان نیز پمپ ھای رفت و برگشتی با طرح ساده ۴ قرن قبل از میلاد ساخته شده بود. تاریخ مشخصی در مورد ابداع پمپھای سانتریفیوژوجود ندارد، اما گفته می شود که نقاشیھای لئوناردوداوینچی در قرن پانزدھم میلادی نشان میدھد که چگونه با اعمال نیروی گریزازمرکز به آب درون یک لوله خمیده، آب را تا مقدار معینی بالا می برد اولین پمپ ھای سانتریفیوژ در اواخر قرن ھفدھم و اوایل قرن ھجدھم توسط مھندسین فرانسوی وایتالیایی ساخته شده و کاربرد عملی یافتند( ١٧٣٢ ). در نیمه ھای قرن نوزدھم عیب اصلی پمپھای رفت و برگشتی که عبارت از مقدار جریان پایین می باشد، موجب این شد که پمپ ھای سانتریفیوژ با استقبال بیشتری روبرو شوند و جایگاه وسیعتری در صنعت پیدا کنند. در پمپ ھای سانتریفوژ مایع به مرکز پمپ و پای پره ھا وارد شده و اثر نیروی گریز از مرکز که ناشی از گردش سریع پمپ می باشد، انرژی جنشی زیادی پیدا کرده و به طرف خارج پرتاب می شود و پوسته را پر از سیال می کند انرژی جنبشی در قسمت خروجی پمپ اجبارا به انرژی فشار تبدیل می گردد.

جهت حرکت پروانه:

جهتی است عمود بر فرو رفتگی پره ھای درون پمپ. ھمانگونه که در مقدمه ھم بیان شد پمپھای گریز از مرکز از پر مصرف ترین پمپھا در صنایع می باشند و کاربردھای فراوانی در ھمه زمینه و از جمله کشاورزی دارند مزیت این پمپھا در آنست که گذر حجمی سیال در آنھا یکنواخت بوده و مسدود و یا تنگ شود، فشار زیاد discharge ھمچنین چنانچه مسیر تخلیه باعث آسیب دیدن پمپ نمی شود . در نتیجه بار آن بحدی نخواھد رسید که موتور محرک خود را از کار بیندازد.

لینک داغ

دو نوع افت فشار داریم: افت اصطکاکی و افت اتصالات.

عملکرد موفق یک پمپ تا حدود زیادی بستگی به انتخاب و نصب صحیح آن دارد. جھت حصول اطمینان از حداکثر کارایی پمپ و حداقل نیاز به تعمیر و نگھداری ، انتخاب پمپ باید با عرضه اطلاعات صحیح به کاتولوگ صورت گیرد. بیشتر سازندگان پمپ اطلاعات لازم در خصوص پمپ تولیدی خود را در کاتولوگ و کتابچه راھنما ذکر می کنند:

اطلاعاتی از قبیل نصب ، عملکرد و تعمیر و نگھداری. در این مبحث منتخبی از

این گونه دانستنیھا درباره پمپھای سانتریفوژ و ھمچنینی عیوب متصوره ، علت

و چگونگی رفع این عیوب ذکر می گردد.

انواع پمپ ھای سانتریفیوژ=  centrifugal pumps

این پمپ ھا بر اساس طراحی پروانه ھا و تعداد پروانه ھا کلاس بندی می

شوند. یک پمپ چند مرحله ای بیشتر از یک پروانه دارد. یک پمپ دو مرحله

ای دو پروانه دارد. یک پمپ دو مرحله ای اثر یکسانی، ھمچون دوپمپ یک

مرحله ای که به صورت سری میباشد، دارند. خروجی پمپ اول وارد پمپ دوم

می گردد.

یک پمپ چند مرحله ای دارای دو یا چند پروانه که روی یک شافت نصب شده

اند، میباشد. دبی در خروجی پروانه دوم بیشتر از دبی خروجی در پروانه اول

است. زیاد شدن تعداد پروانه ھا دبی خروجی نھایی را بالا می برد.

از آنجایی که مایعات تقریبا تراکم ناپذیر ھستند، تمام پروانه ھا در پمپ برای

ظرفیت یکسانی طراحی میگردند. پروانه ھای یک پمپ چند مرحله ای دارای

اندازه یکسانی می باشند. این پمپ ھا ھمچنین براساس تک مکشی و یا دو

مکشی بودنشان کلاس بندی می شوند.

در یک پمپ تک مکشی سیال از یک طرف و در یک پمپ دومکشی سیال از

میان دو طرف پروانه وارد می گردند. از آنجایی که مایع از دوطرف پروانه وارد

میگردد، از یک پمپ دو مکشی برای ظرفیت ھای بالای عملیاتی استفاده

 می شود.

کاربرد پمپ ھای سانتریفیوژ applications centrifugal pupm

پمپ دستگاھی است که با ازدیاد فشار سیال باعث انتقال آن از نقطه ای به

نقطه ای دیگر می گردد.

شامل 17 صفحه فایل word قابل ویرایش


دانلود با لینک مستقیم


دانلود تحقیق شرح کار و ساختمان پمپ های سانتریفوژ گریز از مرکز

طرح توجیهی تولید ماشین آلات ریخته گری گریز از مرکز

اختصاصی از اینو دیدی طرح توجیهی تولید ماشین آلات ریخته گری گریز از مرکز دانلود با لینک مستقیم و پر سرعت .
این طرح توجیهی شامل موارد زیر است :

معرفی محصول
مشخصات کلی محصول
شماره تعرفه گمرکی
شرایط واردات
استانداردهای ملی وجهانی
قیمت تولید داخلی و جهانی محصول
موارد مصرف و کاربرد
کالاهای جایگزین و تجزیه و تحلیل اثرات آن بر مصرف محصول
اهمیت استراتژیک کالا در دنیای امروز
کشورهای عمده تولید کننده و مصرف کننده محصول
وضعیت عرضه و تقاضا
بررسی ظرفیت بهره برداری و وضعیت طرحهای جدید و طرحهای توسعه و در دست اجرا و روند تولید از آغاز برنامه سوم تا کنون
بررسی روند واردات محصول از آغاز برنامه سوم تا نیمه اول سال
بررسی روند مصرف از آغاز برنامه
بررسی روند صادرات محصول از آغاز برنامه سوم و امکان توسعه آن
بررسی نیاز به محصول یا اولویت صادرات تا پایان برنامه چهارم
بررسی اجمالی تکنولوژی و روشهای تولید و تعیین نقاط قوت و ضعف تکنولوژی های مرسوم
در فرآیند تولید محصول
ماشین آلات
بررسی و تعیین حداقل ظرفیت اقتصادی شامل برآورد حجم سرمایه گذاری ثابت
محوطه سازی
ساختمان
ماشین آلات
تاسیسات
وسائط نقلیه
تجهیزات و وسائل اداری و خدماتی
هزینه های متفرقه و پیش بینی نشده
هزینه های قبل از بهره برداری
سرمایه در گردش
برآورد حقوق و دستمزد
برآورد آب, برق, سوخت و ارتباطات
هزینه های تعمیر و نگهداری و استهلاک
هزینه های متفرقه و پیش بینی نشده تولید
هزینه های توزیع و فروش
جدول هزینه های ثابت و متغیر تولید

دانلود با لینک مستقیم


طرح توجیهی تولید ماشین آلات ریخته گری گریز از مرکز

دانلود پایان نامه عوامل مهم در احساس خطر، ترس و گریز از فضای شهری

اختصاصی از اینو دیدی دانلود پایان نامه عوامل مهم در احساس خطر، ترس و گریز از فضای شهری دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه عوامل مهم در احساس خطر، ترس و گریز از فضای شهری


دانلود پایان نامه عوامل مهم در احساس خطر، ترس و گریز از فضای شهری

برنامه ریزی مسکن مهر در شهرهای جدید کشور

اگر بشر هیچگاه ساکن نمی شد صاحب تمدن امروزیش نبود. سکنی گزیدن انسان در بستر محیط به او هستی بخشید و این هستی به تدریج، درک انسان بدوی از محیط را به سمت خودآگاهی برد و زندگی جمعی و آیینی اش تعلق به مکان را موجب شد. مسکن در ابتدا یک نیاز اساسی و زیستی، یعنی یک سرپناه است و حق اجتماعی هر فرد و خانواده ای است. فراهم آوردن شرایط مطلوب برای خانواده به عنوان بنیادی ترین تشکل اجتماعی در جهت تحقق فعالیت های خانوادگی، ثبات و همبستگی خانواده، کارکرد اصلی مسکن است و این نقش بر مشارکت خانواده در جامعه نیز تاثیرگذاراست. مسکن مناسب می تواند محلی برای آرامش و تجدید قوا در فرد باشد و او را از جنبه ها روانی آماده فعالیت کند. مسکن و محیط زیست عامل اصلی تغییر شکل شهرها هستند. بدین گونه که مسکن همواره بزرگترین کاربری شهرها بوده و میزان تامین و تولید مسکن به عنوان عامل کمی تعیین کننده در توسعه فیزیکی شهرهاست.

طرح مسکن مهر به عنوان یکی از برنامه های طرح جامع مسکن و در قالب بند «د» تبصره قانون 6 بودجه سال 86 توسط دولت به مجلس پیشنهاد و با کسب حداکثر آرای نمایندگان مردم، قانونی شد. در ابتدا اگرچه تصور   می شد در قالب یک همکاری سه گانه میان وزارت مسکن و شهرسازی، وزارت تعاون و مردم شکل گیرد و پس از آن با هماهنگی دستگاه ها و ارگان های مربوطه از جمله وزارت اقتصاد و سیستم بانکی کشور مراحل اجرایی را سپری کند. اما این پروژه طی این مدت به بخش های مختلف اعم از انبوه سازان، تعاونی های مسکن و اکنون هم گروه های چند نفره سپرده شده است. ایده مسکن مهر، تامین مسکن برای اقشار آسیب پذیر و جوانان است که با حذف قیمت زمین در جهت کم کاهش فاصله ایده و عمل، به اجرا در آمد. بر این مبنا واگذاری ها بدون احتساب ارزش زمین انجام گرفت و غالبا در اراضی فاقد هویت شهری عرضه شد که محاسن و معایب خاص را به دنبال دارد.

 

شامل 50 صفحه فایل word


دانلود با لینک مستقیم


دانلود پایان نامه عوامل مهم در احساس خطر، ترس و گریز از فضای شهری

دانلودمقاله نحوه ساخت پمپهای گریز از مرکز

اختصاصی از اینو دیدی دانلودمقاله نحوه ساخت پمپهای گریز از مرکز دانلود با لینک مستقیم و پر سرعت .

 

 

 

 


نحوه ساخت پمپهای گریز از مرکز

 

تاریخچه پمپ گریز از مرکز:
مطابق با نوشته های تاریخ نگار برزیلی Reti، یک ماشین آبکش یا لجن کش که بایستی به عنوان نمونه اولیه پمپ گریز از مرکز شناخته شود، در یک مقاله در ابتدای 1475 میلادی توسط مهندس ایتالیایی دوره رنسانس Francesco di Giorgio Martini به عرصه ظهور رسید. پمپ های سانتریفیوز واقعی تا اواخر دهه 1600 توسعه نیافتند تا اینکه Denis Papin یک نمونه از آنرا با تیغه های صاف درست کرد و تیغه منحنی شکل توسط مخترع بریتانیایی John Appold در سال 1851 معرفی شد.
پمپ گریز از مرکز چگونه کار می کند:
یک پمپ گریز از مرکز بر اساس تبدیل انرژی جنبشی یک سیال جاری به فشار ایستا کار می کند. این نحوه عمل بوسیله قانون برنولی توصیف می شود. قاعده عملکرد پمپ گریز از مرکز را می توان با ملاحظه تاثیر تکان دادن یک سطل آب بر روی یک مسیر دایره ای شکل توسط یک طناب، نشان داد. نیرویی که آب را به کف سطل فشار می دهد، نیروی گریز از مرکز است. اگر یک سوراخ در کف سطل تعبیه شود، آب از طریق این سوراخ جریان می یابد. از این گذشته اگر یک لوله ورودی در بالای سطل تعبیه شود، جریان آب به بیرون سوراخ منجر به تولید یک خلاء موضعی در داخل سطل خواهد شد.

 

شبیه سازی جریان سیال در پمپ)
این خلاء آب را از یک منبع در سمت دیگر لوله ورودی به داخل سطل خواهد کشید. بدین روش یک جریان پیوسته از منبع و به بیرون سطل بوجود می آید.
در رابطه با پمپ های گریز از مرکز، سطل و سرپوش آن متناظر با قاب پمپ، سوراخ و لوله ورودی متناظر با ورودی و خروجی پمپ هستند و طناب و بازو متناظر کار پروانه را انجام می دهد.
پمپ گریز از مرکز پمپی است که از یک پروانه گردان بمنظور افزودن فشار یک سیال استفاده می نماید. پمپ های گریز از مرکز عموما برای جابجا کردن سیال از طریق یک سیستم لوله کشی کاربرد دارد. سیال در امتداد یا نزدیک محور چرخان وارد پروانه پمپ گشته و بوسیله این پروانه شتاب می گیرد و به سرعت به سمت بیرون و به داخل یک پخش کننده یا محفظه حلزونی جریان می یابد که از آنجا به درون سیستم لوله کشی پائین جریان خارج می گردد.
تیغه های روی پروانه بطور تصاعدی از مرکز پروانه پهن می شوند که سرعت را کاهش داده و فشار را افزایش می دهد. این امکان به پمپ گریز از مرکز اجازه می دهد تا جریان های پیوسته با فشار بالا ایجاد نماید.

 


دسته بندی پمپ های گریز از مرکز:
پمپ های گریز از مرکز را می توان به چند صورت دسته بندی نمود. یک نحوه دسته بندی بر اساس جریانی است که بوجود می آورند که متشکل از سه دسته هستند:
1. پمپ های جریان شعاعی: در نوع شعاعی فشار سیال کاملا توسط نیروی گریز از مرکز تامین می شود. از این نوع پمپ در مواردی که می خواهند دبی خوبی در اختیار داشته باشند استفاده می شود.
2. پمپ های جریان مختلط: در این نوع پمپ، قسمتی از فشار توسط عمل بالابری یا راندن تیغه ها بر روی سیال صورت می گیرد و قسمتی دیگر بوسیله نیروی گریز از مرکز تامین می شود.
3. پمپ های جریان محوری: در این پمپ ها فشار با عمل پیش رانی و بالابری تیغه ها بر روی سیال بوجود می آید.
در حالت کلی از پمپ های جریان محوری هنگامی که افزایش فشار لازم باشد استفاده می کنند و از پمپ های جریان شعاعی بمنظور تولید دبی سود می برند.
دو جزء اصلی پمپ های گریز از مرکز پروانه و تیغه هستند.
پروانه ها:
نقش پروانه ها در پمپ گریز از مرکز تامین لازم برای سیال می باشد. در پمپ ها دو نوع پروانه پایه ای وجود دارند:
1- مارپیچی
2- توربینی
پروانه های توربینی با تیغه های پخش کننده ای احاطه شده اند که مسیرهای بتدریج پهن شونده ای فراهم می آورند تا سرعت آب را به آهستگی کاهش دهند. بنابراین هد سرعت به هد فشار تبدیل می شود.
پمپ با تیغه های توربینی و مارپیچی)
پروانه مارپیچی با ویژگی نداشتن تیغه های پخش کننده مشخص می شوند. در عوض پروانه آن درون محفظه ای که حلزونی شکل است قرار گرفته و سرعت آب به دلیل ترک کردن پروانه کاهش می یابد که همراه با افزایش فشار می باشد.
انتخاب بین این دو نوع پروانه بسته به شرایط استفاده تغییر می کند. نوع مارپیچی بدلیل ظرفیت بالا و هد مصرفی پائین در چاه های کم عمق معمولا ترجیح داده می شوند. نوع توربینی در چاه های آب عمیق استفاده می شود.
تیغه:
تیغه نقش راندن مایع به خروجی پمپ را دارد که سرعت را به فشار تبدیل می نماید. جزء تیغه در داخل پمپ که معمولا به پروانه متصل است به نوبه خود دارای شکل های گوناگونی است. دسته بندی شکلی تیغه ها را می توان به طور کلی به دو دسته تقسیم نمود:
1. صاف
2. مارپیچ
که این دسته بندی نیز می تواند منجر به دسته بندی کلی در مورد پروانه ها گردد.
مزایا و معایب استفاده از پمپ گریز از مرکز:
- از مزایای پمپ گریز از مرکز می توان به ویژگی تولید یک جریان هموار و یکنواخت اشاره نمود. برخی انواع پمپ های گریز از مرکز مقداری شن نیز پمپ می کنند و در کل مطمئن و دارای عمر کاری خوبی می باشند.
- از معایب این پمپ های می توان به از دست دادن سطح کیفی راه اندازی اشاره نمود که بعد از راه اندازی رخ می دهد. همچنین راندمان این پمپ ها وابسته به کار تحت هد و سرعت طراحی می باشد.
- در راه اندازی یک پمپ گریز از مرکز از آنجائیکه این پمپ ها از مکش استفاده می کنند قابلیت پمپ کردن هوا را ندارند. پس بعنوان یک نتیجه پمپ و لوله بایستی از آب پر باشند تا مشکلی در پمپ آب بروز نکند.
نابالانسی در پمپ های گریز از مرکز:
وقتی اجزاء چرخان پمپ نابالانس باشند، ارتعاش حاصل از عضو چرخان نابالانس می تواند ترسناک باشد. این ارتعاش می تواند موجب لرزش سطح زمینی که دستگاه روی آن قرار گرفته است شود، دستگاه های اطراف آن در جای خود تکان می خورند، پیچ های نگه دارنده شل می شوند و قطعات می شکنند. یک عضو چرخان نابالانس یر روی یاتاقان های خود نیرو اعمال می کند و آنرا از طریق سازه خود به بیرون منتقل می نماید و نهایتا این نیرو به فندانسیون می رسد.
دلایل بروز نابالانسی:
1. خمش یا قوس برداشتن بین یاتاقان های تکیه گاهی
2. وزن معلق تحت نیروی ثقل محور محرک را خمیده می کند
3. ماده یا سیال غیریکنواخت توزیع شده در روتور
4. قطعات هرز و لق شده بر روی روتور
5. قطرهای مختف المرکز بر روی روتور که ناشی از ساخت می باشد و قطعات روی روتور هم مرکز نشده اند
6. هم تراز نبودن مسیر رانش با محور روتور
7. کوپلینگ های راننده لق از پشت هم پرش می کنند
8. از بین رفتن تلرانس های بین قطعات مونتاژ شده بر روی روتور
9. شانه ای های روی روتور خارج از میدان محور دوران ساخته شده اند
10- خلل و حفره های روی روتور
11- هم تراز نبودن یاتاقان ها به محور نیرو وارد کرده و آنرا قوس می دهد
کاویتاسیون:
کاویتاسیون را می توان رفتار خلل و حباب هایی دانست که در سیال بوجود می آیند. از نظر رفتاری کاویتاسیون را می توان به دو دسته تقسیم بندی نمود:
1. کاویتاسیون غیر فعال (گذرا)
2. کاویتاسیون فعال
کاویتاسیون غیرفعال: فرایندی است که یک خلل یا حباب در سیال به سرعت از بین می رود و یک موج ضربه بوجود می آورد. این نوع کاویتاسیون اغلب در پمپ ها، پروانه های کشتی، پروانه های موتور و در بافت های آوندی گیاهان رخ می دهد.
کاویتاسیون غیر فعال ابتدا در اواخر قرن نوزدهم توسط Lord Rayleigh وقتی از بین رفتن یک خلل کره ای را در یک سیال مشاهده نمود، بررسی شد. وقتی یک حجم مایع در معرض یک فشار کم کارامدی قرار می گیرد، مایع می ترکد و یک حفره تشکیل می دهد. این پدیده آغاز کاویتاسیون نامیده می شود و می تواند در پشت تیغه یک ملخ یا پروانه که به سرعت می چرخد یا هر سطح دیگری که در زیر آب با اندازه و شتاب کافی ارتعاش می کند، رخ دهد. چنین حباب کاویتاسیون با فشار کم درون مایع، به خاطر فشار بالاتر محیط از بین می رود. همانطور که حباب از بین می رود، فشار و دمای بخار درون آن افزایش می یابد. در نهایت حباب به کسر کوچکی از اندازه اصلی خود تبدیل می شود که در این نقطه گاز درون حباب به محیط مایع پراکنده شده و یک مقدار انرژی زیادی را به شکل موج ضربه صوتی و نور مرئی رها می سازد. در نقطه فروپاشی کلی دمای بخار درون حباب می تواند چندین هزار درجه کلوین و فشار آن چند صد اتمسفر باشد.
کاویتاسیون غیرفعال می تواند در حضور یک میدان صوتی نیز رخ دهد. حباب های گاز میکروسکوپی که عموما در یک مایع حضور دارند بدلیل بکار گرفتن میدان صوتی مجبور به نوسان می شوند. اگر چگالی صوتی به مقدار کافی بالا باشد، حباب ها ابتدا از لحاظ اندازه رشد می کنند و سپس به سرعت فروپاسیده می شوند. بنابراین کاویتاسیون غیر فعال حتی اگر کاهش فشار مایع برای خلل مشابه مشاهده Rayleigh کافی نباشد، می تواند رخ دهد. حمام های فراصوتی معمولا از کاویتاسیون غیرفعال حباب های گاز میکروسکپی برای فرسایش چرک از مواد استفاده می کنند.
عمل کاویتاسیون بسیار شبیه به جوشش می باشد. اما تفاوتی که بین این دو فرایند وجود دارد بصورت زیر است. جوشش وقتی رخ می دهد که انرژی مایع به حدی برسد که بر فشار محیط غلبه کند و به عبارتی افزایش فشار دارد. اما در کاویتاسیون مایع افت فشار را تا حدی ادامه می دهد تا به فشار اشباع رسیده و شروع به تبخیر نماید.
کاویتاسیون فعال: فرایندی است که حباب های کوچک در یک مایع به نوسان در حضور یک میدان صوتی، وقتی شدت میدان صوتی برای فروپاشی کلی حباب ناکافی باشد، واداشته می شوند. این شکل از کاویتاسیون فرسایش بسیار کمتری نسبت به کاویتاسیون غیرفعال را سبب می شود و اغلب برای پاک کردن مواد ظریف مانند قطعات پنجره ای سیلیکون استفاده می شوند.
معایب کاویتاسیون در برخورد حباب های کوچک شده با دمای بسیار بالا و دارای موج ضربه با سطوحی مانند پروانه کشتی و پمپ ها می باشد.
کاویتاسیون :
• صدای زیادی تولید می کند
• اجزاء را تخریب می کند
• ارتعاشات تولید می نماید
• راندمان را کاهش می دهد.
مزایا:
با وجود آنکه کاویتاسیون در بسیاری از محیط ها مطلوب نمی باشد، اما همیشه بدین صورت نیست. از کاویتاسیون نیز می توان سود برد. به عنوان مثال از کاویتاسیون در ابزارهای پاک کننده فراصوتی استفاده می شود. این ابزارها کاویتاسیون را با امواج صوتی تولید کرده و از فروپاشی حباب ها برای تمییز کردن سطوح بهره می گیرند. این کاربرد مفید نیاز به مواد شیمیایی مضر را در برخی موارد از بین می برند. همچنین از کاویتاسیون در برخی مایعات برای هموژنیزه کردن استفاده می کنند. و در نهایت در تصفیه و خالص سازی آب نیز می توان از کاویتاسیون بهره برد.
کاویتاسیون در پمپ ها و پروانه ها:
بیشترین جایی که کاویتاسیون رخ می دهد در پمپ ها، روی پروانه های کشتی می باشد.
همانطور که یک تیغه پروانه در یک پمپ یا پروانه کشتی یا زیردریایی در سیال حرکت می کند فشار در اطراف آن تیغه کاهش می یابد. با افزایش سرعت تیغه این کاهش فشار به جایی می رسد که فشار تبخیر سیال تامین می شود. در این حالت سیال تبخیر شده و حباب تشکیل می شود. حال کاویتاسیون رخ داده است. وقتی این حباب ها فروپاشی می شوند، امواج ضربه قوی در سیال بوجود می آید که قابل شنیدن است و حتی تیغه ها را از بین می برد. کاویتاسیون در پمپ ها به دو صورت رخ می دهد:
کاویتاسیون در مکش:
این کاویتاسیون بدلیل فشار کم در مکش رخ می دهد که سبب ایجاد حباب در ورودی پروانه پمپ گشته و تا خروجی پمپ ادامه می یابد. در خروجی بدلیل فشار زیاد سیال خروجی این حباب ها از بین می روند. در پمپ هایی که تحت این نوع کاویتاسیون عمل می کنند، مقدار زیادی از سطح پروانه ها از بین رفته و در نتیجه پمپ بطور ناگهانی از کار می افتد.

 


کاویتاسیون در خروجی:
در این نوع کاویتاسیون فشار خروجی پمپ بسیار بالا است و این بدلیل کار کردن پمپ در کمتر از 10 درصد راندمان آن می باشد. فشار خروجی بالا سبب برقراری یک چرخه از سیال درون پمپ می شود تا اینکه آن سیال را به جریان وادار سازد. همانطور که سیال در اطراف پروانه جریان می یابد در اثر سرعت سیال خلا ایجاد شده و حباب تشکیل می شود. در نتیجه کاویتاسیون موجب بروز اثرات مخرب در پمپ می گردد. این اثرات عبارتند از: از بین رفتن تیغه ها، از کار افتادگی کامل یاتاقان ها و آب بندهای پمپ تحت فشارهای بالا، در شرایط بحرانی تر می تواند محور پروانه را بشکند.
نتیجه گیری:
1. در راه اندازی پمپ های گریز از مرکز حتما باید به این نکته توجه داشت که لوله و پمپ از آب پر باشند، زیرا که این پمپ ها بدلیل ایجاد مکش نمی توانند هوای باقی مانده در لوله را پمپ نمایند. بهمین دلیل همیشه در راه اندازی شیر خروجی بسته است و شیر ورودی باز می ماند. از طرف دیگر آمپر راه اندازی پمپ کاهش می یابد و در نتیجه به موتور آسیبی نمی رسد.
2. در پمپ های گریز از مرکز اگر پمپ کردن دبی بیشتر از سیال مورد نظر باشد، از پمپ های نوع جریان شعاعی بهره میگیریم.
3. در پمپ های گریز از مرکز اگر فشار سیال دارای اهمیت باشد، از پمپ های محوری کمک می گیریم.
4. تیغه های منحنی شکل در درون پروانه پمپ راندمان بالاتری از تیغه های کاملا صاف و شعاعی دارند.
5. نابالانسی در پمپ های گریز از مرکز به هر دلیلی که رخ دهد می تواند باعث آسیب رساندن به پمپ و مخصوصا روتور و قطعات سوار شده بر روی آن گردد.
6. در پمپ ها از بروز کاویتاسیون باید جلوگیری نمود که این کار را می توان با روش های مذکور انجام داد:
• دور کردن خم ها و شیرها از محل ورودی پمپ تا میزان تجربی حداقل 3 برابر قطر لوله
• جلوگیری از پائین آوردن میزان کار پمپ تا کمتر از 10 درصد راندمان آن تا از ایجاد فشار بیش از اندازه در محلی بعد از پروانه پمپ جلوگیری شده و احتمال بروز خلاء و در نتیجه کاویتاسیون کم شود.
• در نظر گرفتن قطر مناسب لوله ورودی تا از افت فشار در قبل از ورودی پمپ و در نتیجه بروز خلاء و کاویتاسیون اجتناب نمود.
7. از کاویتاسیون می توان در جهت بهره گرفتن از آن استفاده نمود و نیاز به مواد شیمیایی مضر را در برخی موارد حذف نمود.
پمپهای گریز از مرکز (پمپهای سانتریفوژ) Centrifugal pump

 

دید کلی
در این این نوع پمپ مایع به مرکز پمپ و پای پره‌ها وارد شده و اثر نیروی گریز از مرکز که ناشی از گردش سریع پمپ می‌باشد، انرژی جنشی زیادی پیدا کرده و به طرف خارج پرتاب می‌شود و پوسته را پر از سیال می‌کند. انرژی جنبشی در قسمت خروجی پمپ اجبارا به انرژی فشار تبدیل می‌گردد. جهت حرکت پروانه: جهتی است عمود بر فرو رفتگی پره ها در پمپها. پمپهای گریز از مرکز از پرمصرف‌ترین پمپهائی می‌باشند که در صنعت بطور فراوان بکار می‌روند. حسن این پمپها در آنست که گذر حجمی سیال در آنها یکنواخت می‌باشد و همچنین چنانچه لوله تخلیه مسدود و یا تنگ شود، فشار زیادی که به پمپ آسیب رساند ایجاد نخواهد کرد و در نتیجه بار آن بحدی نخواهد رسید که موتور محرک خود را از کار بیندازد. دو نوع افت فشار داریم:
افت اصطکاکی و افت اتصالات.
عملکرد موفق یک پمپ تا حدود زیادی بستگی به انتخاب و نصب صحیح آن دارد. جهت حصول اطمینان از حداکثر کارایی پمپ و حداقل نیاز به تعمیر و نگهداری ، انتخاب پمپ باید با عرضه اطلاعات صحیح به کاتولوگ صورت گیرد. بیشتر سازندگان پمپ دانستنیهای لازم در خصوص پمپ تولیدی خود را در کاتولوگ و کتابچه راهنما ذکر می‌کنند: اطلاعاتی از قبیل نصب ، عملکرد و تعمیر و نگهداری. در این مبحث منتخبی از این گونه دانستنیها درباره پمپهای سانتریفوژ و همچنینی عیوب متصوره ، علت و چگونگی رفع این عیوب ذکر می‌گردد.

 

 

 

انواع پمپهای گریز از مرکز
پمپهای گریز از مرکز را بر حسب نوع ساختمان آنها به انواع زیر تقسیم بندی می‌کنند:
1. از نظر وضعیت طبقات که ممکن است یک طبقه و یا چند طبقه باشند.
2. از نظر مقدار آبدهی و ارتفاع که ممکن است بصورت کم ، متوسط و زیاد باشند.
3. از نظر نوع پروانه ، تعداد تیغه و وضعیت آنها.
ممکن است پمپها را بر حسب نوع استفاده آنها تقسیم بندی کنند:
1. پمپهای سیرکولاتور برای به جریان انداختن آب گرم در سیستمهای حرارتی.
2. پمپهای افقی یک طبقه از نوع مکش مارپیچی جهت استفاده در تأسیسات مکانیکی.
3. پمپهای سانتریفوژ فشار قوی چند طبقه جهت استفاده در آبرسانی و غیره.
4. پمپهای شناور جهت استفاده در چاههای عمیق و نیمه عمیق.
5. پمپهای لجن کش جهت استفاده در سیستمهای فاضلاب.
نظر به اینکه پمپهای طبقاتی در سیستم تأسیساتی کاربرد فراوان دارند، مختصرا به ساختمان این نوع پمپها اشاره می‌گردد.
پمپهای سانتریفوژ از نظر مکش
پمپهای سانتریفوژ ممکن است با یک مکش یا با دو مکش باشند. پمپهای سانتریفوژ با دو مکش جریان سیال را از طریق دو لوله و به مقدار یکسان از دو طرف پروانه وارد پمپ می‌کنند.
عوامل موثر بر ظرفیت پمپهای سانتریفوژ
ظرفیت یک پمپ سانتریفوژ بستگی به چگونگی طراحی پمپ ، سرعت گردش پروانه پمپ ، فشار مطلق قسمت مکش پمپ ، فشار قسمت تخلیه پمپ و خواص فیزیکی سیال عبوری از پمپ دارد.
اجزای یک پمپ سانتریفوژ
1. موتور ، که باعث حرکت دورانی محور می گردد.
2. روتور ، (که خود شامل محور و پره‌ها است).
3. پوسته جداره
4. لوله مکش
5. لوله رانش
6. محفظه بین پوسته و پروانه
پروانه پمپ شامل پره‌هایی می‌باشد که به نحوی ساخته شده‌اند تا جریان داخل پمپ حتی المقدور یکنواخت باشد.
انواع پروانه‌های پمپهای سانتریفوژ
چند نوع از پروانه‌های پمپهای سانتریفوژ را نشان می‌دهد هر چه تعداد پره‌های پروانه بیشتر باشد کنترل در جهت حرکت سیال بیشتر بوده و تلفات ناشی از جریانهای گردشی بین پره‌ها کمتر خواهد بود.
انواع پروانه‌های معمولی
پروانه ممکن است به یک صفحه متصل باشد یا بین دو صفحه قرار گرفته باشد یا آزاد باشد. مایع در جهت محور وارد بدنه پمپ می‌شود و مایع ورودی بوسیله پره‌های پروانه گرفته شده و به داخل یک پیچک که مماس بر پمپ می‌باشد تخلیه می‌گردد. آب بندی پمپهای سانتریفوژ مسئله مهمی است که عدم رعایت آن باعث کاهش راندمان عمل پمپ می‌گردد. همانطور که از این پمپها در ک می‌شود، اساس کارشان برای حمل سیالات از نقطه‌ای به نقطه دیگر بر حرکت سیال در خلاف جهت مرکز محور پمپ بنا نهاده شده است، یعنی در واقع سیال با دور شدن از مرکز محور پمپ به داخل لوله رانش هدایت خواهد شد و یا اختلاف فشار ایجاد شده بین قسمت مکش و رانش پمپ ، سیال با سرعت به حرکت خود در سوی تخلیه ادامه می‌دهد. اصولا این پمپها متشکل از یک پروانه و یک محور که در داخل یک پوسته فلزی مستقر می‌باشند (این پوسته فلزی VOLUTE یا نوع پیچکی نامه دارد و پروانه داخل پوسته IMPELLER موسوم است.

 


مواد ساختن پمپهای سانتریفوژ
پمپهای سانتریفوژ را از مواد مختلفی می‌سازند. اکثرا پروانه و بدنه از مواد مقاوم در مقابل خوردگی و سایش ساخته می‌شوند. فولاد ضد زنگ ، نیکل ، لاستیک ، پلی پروپیلن در ساختمان پمپهای سانتریفوژ بکار می‌روند. در صورتی که پمپهای سانتریفوژ برای انتقال سیالات حاوی مواد معلق جامد مورد استفاده قرار می‌گیرند، بایستی فاصله بین پره‌ها و دریچه‌ها به اندازه کافی بزرگ باشند تا از خطر مسدود شدن آنها جلوگیری شود.
مزایای پمپهای سانتریفوژ
• پمپهای سانتریفوژ دارای ساختمان ساده‌ای بوده و از مواد گوناگون ساخته می‌شوند.
• در استفاده از این پمپها نیازی به شیر یا سوپاپ می‌باشد.
• چون پمپ در سرعتهای بالا عمل می‌کند لذا می‌توان آنرا مستقیما به موتور الکتریکی متصل نمود. با افزایش سرعت برای عملکرد معین ابعاد پمپ کوچکتر می‌شود.
• دبی آن یکنواخت است.
• هزینه تعمیرات آن از پمپهای دیگر کمتر می‌باشد.
• درصورت قطع جریان می‌تواند مدت بدون آسیب رسیدن به پمپ به گردش ادامه دهد.
• برای انتقال سیالات با مواد معلق بخوبی عمل می‌کنند.
• نسبت به پمپهای دیگر با ظرفیت مشابه دارای ابعاد کوچکتری می‌باشند.
معایب پمپهای سانتریفوژ
• پمپهای سانتریفوژ قادر به ایجاد فشارهای بالا نمی‌باشند و به این منظور برای فشارهای بالا باید از پمپهای چند مرحله‌ای استفاده نمود.
• در شرایط معین و محدودی با راندمان بالا عمل می‌کند.
• راه اندازی این پمپها نیاز به آماده سازی دارد.
• در صورتی که پمپها از کار بیفتند، سیال می‌تواند به قسمت مکش از درون پمپها جاری شود. لذا بهتر است که در خروجی این پمپها از شیر یک طرفه استفاده نمود.
• برای سیالات با ویسکوزیته (غلظت) بالا نمی‌توان از این نوع پمپ استفاده نمود.

 


پمپهای حلزونی (پیچکی) و افشان
لازم به یادآوری است که پمپهای پیچکی و افشان کاملا از نوع گریز از مرکز می‌باشند.
پمپ حلزونی تلمبه پیچکی: در تلمبه‌های پیچکی گریز از مرکز، پروانه در داخلی محفظه مارپیچ حلزونی که بتدریج توسعه می یابد گردش می کند و در اثر گردش محور تلمبه، که به پروانه انتقال می یابد سیال از مرکز پمپ در جهت شعاع و به سوی کناری پوسته پمپ حرکت کرده بطرف لوله رانش منحرف می شود. این پمپها یا طبقه و چند طبقه نیز ساخته می شوند. بیشترین کاربرد را در صنعت دارند.
پمپ افشان: پروانه تلمبه افشان در داخل محفظه پره داری گردش می‌کند که پره‌های آن ثابت بوده (پخش کننده‌ها) و برای عبور مایع مجراهائی واگرایی تعبیه شده‌اند که به تدریج توسعه می‌یابند. جهت جریان مایع ورود به این مجراها تغییر کرده و پیش از ورود به محفظه مارپیچی تغییرات سرعت مبدل به تغییرات فشار می‌شود. اصولا راندمان با ضریب بهره دهی پمپهای افشان بیش از پمپهای پیچکی است و همچنین پمپهای افشان را با قدرتهای بالا و ظرفیتهای آبدهی فراوان می‌سازند و چون ساختمان داخل آن پیچیده است به نسبت ، قیمت آن از قیمت پمپهای پیچکی گرانتر است. این پمپها یک طبقه و چند طبقه ساخته می‌شوند.
کاربرد پمپهای سانتریفوژ
در اکثر صنایع و رسانشهای ساختمانی ، در صنایع شیمیای و نقت پمپهای سانتریفوژ مصارف بسیاری دارند. پمپهای سانتریفوژ برای مایعات مختلفی با مواد معلق گوناگون بکار می‌روند. سرعت این پمپها زیاد می‌باشد، لذا می‌توان آنها را مستقیما به الکتروموتور وصل نمود.
پمپهای یک طبقه و چند طبقه
پمپهای یک طبقه SINGLE-STAGE PUMPS: پمپهای گریز از مرکز یک طبقه با انواع گوناگون پروانه ها ساخته می شود، یکی از ساده ترین انواع آنها دارای یک مجرای مکش و یک پروانه می باشد و به این جهت یک طبقه نامیده شده است. پره های پروانه بین دو صفحه قرار گرفته اند و مجاری مایع بین پره ها و این دو صفحه محصور گردیده اند. این نوع پروانه به تمام بسته موسوم می باشد که مورد استعمال بیشتری دارد.
پمپهای چند طبقه MULTISAGE PUMPS: پمپهای طبقه گریز از مرکز ، تا کنون برای تولید 40 اتمسفر فشار (600 پوند بر اینج مربع و یا ارتفاع 350 متر آبدهی) و با سرعت 7150 دور در دقیقه ساخته شده اند. با این حال وقتی که سرعت گردش تلمبه از 3500 دور در دقیقه تجاوز نکند، معمولا ارتفاع آبدهی آنها از 120 متر تجاوز نمی‌کند.
بنابراین در مواردی که ارتفاع آبدهی پمپهای یک طبقه کافی نباشد از پمپهای چند طبقه که دارای ارتفاع آبدهی بیشتری است استفاده می‌کنند. شاید لازم به یادآوری باشد که چون در صنایع استخراج نفت لازم است، پمپهائی بکار گرفته شود که دارای ظرفیت گذر حجمی بسیار زیاد و ارتفاع فوق العاده باند از پمپهای چند طبقه استفاده می‌شود، برای مثال پمپی ساخته شده است که دارای 317 طبقه (هر طبقه و یک محفظه می‌باشد) و به ارتفاع انرژی 2700 متر بوده است. بطور خلاصه در یک پمپ چند طبقه دور یا چند پروانه متوالی روی یک محو قرار می‌گیرند. آب در پوسته همان طبقه جمع شده ، طبقه دوم تخلیه می‌شود و از دوم به سوم و به همین ترتیب ادامه می‌یابد. پمپهای چند طبقه هم با محور افقی و هم با محور قائم کاربرد دارند.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


منبع
www.daneshnameh.com

 

 

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  26  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلودمقاله نحوه ساخت پمپهای گریز از مرکز

دانلود مقاله مقاله ترجمه شده تحلیل فنداسیون کارخانه های سیمانی فن ID گریز از مرکز

اختصاصی از اینو دیدی دانلود مقاله مقاله ترجمه شده تحلیل فنداسیون کارخانه های سیمانی فن ID گریز از مرکز دانلود با لینک مستقیم و پر سرعت .

 

 

 

چکیده
این مطالعه واکنش بارگذاری با میزان بالا، طبیعت بازگذاری پیچیده، و تعداد دوره های بارگذاری در ساختارهای بتنی در فنداسیون های بزرگ مانند فن های ID را بررسی میکند که در کارخانه های سیمان صنعتی مورد استفاده قرار می گیرند. این تحقیق بر اساس یک مدل اجزای محدود (FEM) با قابلیت انجام تحلیل های خطی سه بعدی (3D) تحت بارهای استاتیک و دینامیک برای Fc مختلف و ضریب کشسانی (Es) بود. FEM ها دارای قابلیت مدلسازی فشار و کشش برای بازبینی نقطه های مهم فنداسیون در همه محورها هستند. ما همچنین اثرات پارامترهای مختلف مانند تاب فشردگی بتن و آرماتور رفتار فنداسیون تحت میزان بارهای استاتیک و دینامیک سرعت موتور فن ID (400، 800، 1200، 1500، و 180 دور در دقیقه) را برای شناسایی نقاط مهم در همه محورها بررسی کردیم. نتایج FEM با فنداسیون های موجود فن ID (بر اساس مدارک آزمایشگاهی) مقایسه شدند تا دقت شبیه سازی های ایجاد شده توسط FEM ارزیابی گردد. مشاهده می گردد که یافته های این مطالعه تأیید می کند که چه چیزی حرکت اصلی از تفکر جاری را در مورد خصوصیات مواد مدلسازی بتن تحت بارهای مختلف برای افزایش دادن طول عمر فنداسیون بتنی فن ID تشکیل میدهد.
کلمات کلیدی: فنداسیون بتنی، تاب فشردگی، بارگذاری، مدلسازی.
1- مقدمه
بعلت لرزش فن و مشکلات عملیاتی در پی آن، تعطیل کار، و عملیات متوقف شده، تحلیل فنداسیون های بتنی سازه های بزرگ برای فن های ID چالش برای کارخانه های صنعتی متنوع است. ترک برداشتن فنداسیون بتنی نه تنها بخاطر نقص های مکانیکی بوجود می آید که پرسنل کارخانه نمی توانند آنرا بطور کامل برطرف کنند (مانند عدم تعادل و نامیزان بودن)، بلکه همچنین بخاطر نوع بارگذاری، سرعت روتور ها، و بارگذاری دوره ای و دینامیک بوجود می آید (شکل 1). لرزش فن، که بخاطر دلایل ذکر شده و همچنین تشدید فرکانس بار دینامیک ایجاد می شود، ممکن است عامل امینتی فنداسیون فن ID را کاهش دهد. با بررسی اعتبار طراحی فنداسیون برای موقعیت ثابت (چون عملاً خیلی اتفاق می افتد) ممکن است برای ایجاد یک طراحی مناسب فنداسیون کافی نباشد.

شکل 1 – فنداسیون بتنی سیستم فن ID که ترک برداشته است.
محققان زیادی تلاش کرده اند که دلایل حساسیت بالاتر فنداسیون های فن ID را تعیین کنند تا بتوانند طول عمر آنها را افزایش دهند. در آغاز قرن بیستم، تحلیل فنداسیون های بتنی بزرگ محدود به محاسبات استاتیک بر مبنای بارهای عمودی بود که شامل بار مرده به اضافه 3 تا 5 برابر وزن ماشین بود. البته، اکنون مشخص است که این طرح ها با فرکانس طبیعی رده اول به تنهایی برای توصیف کردن رفتار دینامیک فنداسیون های بتنی بزرگ کافی نیستند. بعبارت دیگر، درک بهتری از فرآیندها نیازمند یک تحلیل دینامیک می باشد. چالش های جدی ایجاد شده بوسیله ارتفاع برج ها و فنداسیون ها همراه با مسائل مربوط به مفاهیم طراحی، طول عمر، تأثیرات محیطی، و بار دینامیک ضرورت بازبینی راه حل های جمع آوری و تولید موجود را ایجاد میکند. بنابراین مدل عناصر نهایی (FEM) روش مفیدی برای شمول سازی همه پارامترها بدون ساختن فنداسیون در مقیسا کامل است. تحقیقات در مورد FEM نشان داده است که فرکانس های طبیعی اول و دوم بدست آمده از ماتریس سختی با رفتار جانبی مطابقت خیلی خوبی را با FEM فنداسیون ایجاد کرده است وقتی که اثرات اینرسی بر روی فنداسیون را بتوانیم نادیده بگیریم. مدل های شکل خمیدگی عملکردی (ODS) هم برای شناسایی ضعف فنداسیون در یک فن ID بزرگ اعمال می گردند. این مدل ها نشان داده اند که اضافه کردن حجم و سختی بتن می تواند قابل اعتماد باشد بجز زمانیکه مقاومت در آن وجود داشته باشد. قابلیت اطمینان این مدل ها را می توان از قانون دوم نیوتن در مورد حرکت بدست آورد که بیانگر اینست که سطوح شتاب (a) بتدریج با افزایش جرم (m) کاهش پیدا میکند. از طرف دیگر قانون هوک ، نشان میدهد که سختی افزایش یافته (k) عموماً با سطوح جایگزینی پایین تری (x) همراه است. بنابراین، سیستم های مجزا برای کاهش لرزش فنداسیون مفید خواهند بود. و بسامدهای همنوای روتور و سیستم پشتیبانی ممکن است سبب لرزش زیاد دامنه گردد. جرم بلوک فنداسیون هم باید کافی باشد. دقت و ابعاد فنداسیون ها، خصوصاً فنداسیون های پیچیده تر، را می توان توسط تحلیل کامل فشارها و کشش های موجود ارزیابی کرد.
راهکارها و استانداردهای مختلفی از نوع بارگذاری (بر اساس ضریب بار)، خصوصیات مواد، و عامل امنیت برای تعیین طراحی مناسب فنداسیون های فن ID تحت بارهای استاتیک و پویا استفاده کرده اند. با اینکه چندین مطالعه پارامترهای فن ID را مشروط به بار استاتیک یا دینامیک ارزیابی کرده اند، با اینحال تغییر شکل بار و فشار ایجاد شده توسط لرزش فن و جرم مورد مطالعه قرار نگرفته اند. این عوامل هم به نوبه خود تحت تأثیر شکل و اندازه فنداسیون و استحکام مواد قرار می گیرند. خصوصیات داکت پیچ ها و مهره ها، که برای متصل کردن ماشین به فنداسیون استفاده می شوند، هم باید با دقت طراحی گردد. اجرا و تعیین دقیق طراحی می توانند فشارها و کشش های اعمال شده به فنداسیون فن را کاهش دهند و در نتیجه طول عمر آنها را افزایش دهند.
چون پیش بینی رفتار فنداسیون در شرایط مختلف می تواند کارایی ساختاری آنرا افزایش دهد، مطالعه حاضر در صدد است تا از FEM برای برآورد دقیق رفتار فنداسیون بتنی تحت بارهای استاتیک و دینامیک با فراوانی های مختلف استفاده کند. این نکته حائز اهمیت است که بعلت عدم تعادل ممکن فن، بار اعمال شده به فنداسیون عموماً دینامیک است مگر اینکه از میراگر یا مقره استفاده شود. بنابراین ما تلاش کرده ایم تا رفتار ساختاری فنداسیون فن تحت بارهای مختلف – برای مثال، بار استاتیک و دینامیک با سرعت روتور 400، 800، 1200 و 1800 دور در دقیقه (rpm)– را ارزیابی کنیم. ما همچنین از استحکام مواد مختلف، همچون تاب فشردگی بتن و آرماتور، استفاده کردیم تا نقاط مهم ساختارهای فنداسیون را بر حسب جابجایی و فشارهای وارد شده تعیین کنیم تا بتوانیم رفتار واقعی ساختار و احتمال آسیب های بیشتر را پیش بینی کنیم. و ما در آخر پیش بینی های خود را با فنداسیون بتنی واقعی کارخانه مقایسه کردیم.
2- حالت های بار
تحلیل فنداسیون نیازمند بررسی دقیق بارهای ماشینی است که به بارهای استاتیک و دینامیک و بارهای اعمال شده در حین عملیات تقسیم می گردد، که توسط کارخانه های تولیدی فراهم می گردد. بار استاتیک اصلی معمولاً توسط بار مرده تجهیزات ایجاد می گردد. از طرف دیگر، اندازه لحظات ایجاد شده توسط مکانیزم های رانش، که معمولاً بعنوان بار عمودی محاسبه می گردد، به سرعت چرخش و خروجی قدرت بستگی دارد.
عدم تعادل، که زمانی ایجاد می گردد که مرکز بخش چرخشی جرم با مرکز چرخش مطابقت نداشته باشد، مسئول بارهای دینامیک اصلی در حین عملیات است. اگرچه این بارها معمولاً توسط سازندگان ماشین معرفی می گردند، با اینحال آنها را می توان بر اساس درجه کیفیت تعادل روتور محاسبه کرد.
بار نامتعادل برآیند با جرک چرخشی بصورت زیر محاسبه می گردد:

که :
= خروج از مرکز مجاز
و
= سرعت روتور.
چون این عدم تعادل در عملیات افزایش می یابد، بدست آمده از معادله 1 را باید در یک عامل ضرب کرد، که معمولاً و نه همیشه باید بیشتر از 2 باشد.
تحلیل دینامیک بر اساس حالت های لرزش ساختارهای مشابه و لرزش های اندازه گیری شده در سرعت های مختلف فن انجام می شود. مطابق معادله 1، کلی همه پیچ ها، که توسط چرخش ایجاد می شود، بترتیب 10، 20، 30، 40 و 50 تن برای فرکانس های چرخشی ذکر شده در بالا خواهد بود. بر اساس جهت چرخش فن، نیروی متمرکز را باید در یک طرف کششی و در طرف دیگر فشاری فرض کنیم. بار استاتیک اعمال شده در سطح توسط ورزش تجهیزات 60 تن فرض شده است.
3- توضیح مدل و مطالعه پارامترها
یک مدل عددی سه بعدی برای بررسی رفتار فنداسیون های بتنی فن های ID در شرایط بارگذاری ترکیبی ایجاد شد. شکل 2 اطلاعات کاملی – مانند اندازه و تعداد آرماتور ها، طول (7 متر)، عرض (3 متر)، و عمق (2 متر) – را درباره فنداسیون بتنی نشان میدهد.

شکل 2: جزئیات فنداسیون

 

برنامه ریزی اجزای محدود با استاندارد FEA 6.13 انجام شد. نسبت های موقعیت پوسان 0.2 و 0.3 و چگالی های 2400 و در نرم افزار وارد شدند. مؤلفه های بتن و میله های فولادی ابتدا توسط نرم افزار (بر اساس جزئیات عملی و واقعی) تولید شدند و سپس در موقعیت های مناسب جمع آوری شدند. بعلاوه، میله های فولادی به هم متصل شدند و بطور کامل در ساختار بتنی جاسازی شدند.

شکل 3: ابعاد فنداسیون، مدل اجزای محدود و منطقه تعیین شده

 

شبکه بندی صحیح مؤلفه های ساختاری بدست آمده برای دقت نتایج مهم است. بنابراین، یک شبکه چهاروجهی مربعی و یک شبکه تیر مربعی 3 گره ای در فضا بترتیب برای ساختار بتنی و میله های فولادی در نظر گرفته شد. در مرحله بعدی، بارگذاری استاتیک و دینامیک بر اساس معادلات مربوطه نیروی گریز از مرکز انجام شد. سپس داده های مربوط به اتصالات پشتیبانی ثابت، که شامل همه چرخش ها و حرکت ها است، در منطقه فنداسیون بتنی (A) ایجاد شدند. در مدل دینامیک، مراحل پله/مجموعه بر اساس روش آنالیز، خروجی های مورد نظر (مانند تنش، جابجایی ها، و واکنش های پشتیبان)، و بارهای اعمال شده تحلیل شد. در حین مدلسازی، ما A را بصورت محکم و جابجایی های در محورهای X, Y و Z و همچنین چرخش را صفر در نظر گرفتیم. چون برآورد ژئوفیزیکی منطقه مطالعه بطور واضح واکنش ها و تنش های اعمال شده بر روی ساختار را تعیین می کند، مدلسازی بر اساس این ارزیابی ها منجر به نتایج دقیق تری خواهد شد. شکل 1 ابعاد فنداسیون مدلسازی شده را نشان میدهد و بخش های مختلف فنداسیون مانند منطقه خاک شده (A)، پایه ستون زیر موتور فن اصلی (B)، سوراخ های ایجاد شده بصورت متقارن در هر دو طرف فنداسیون برای محکم کردن پیچ ها بر روی صفحه زیرین ماشین (C)، پایه ستون زیر فن (D)، و سطوح بارگذاری فنداسیون (E و F) را نشان میدهد.
چهار مدول کشسانی مختلف بتن و سه مدول آرماتور برای مطالعه اثرات خصوصیات فنداسیون انتخاب شدند. یک مسئله اصلی در مدلسازی عددی فنداسیون ها، شبیه سازی نوع بارگذاری اعمال شده در سطح فنداسیون بتن است.
4- فرکانس بار و فرکانس طبیعی
در حین مرحله اولیه فن های ID گریز از مرکز در یک کارخانه بزرگ، لرزش های فنداسیون های متصل به روتور معمولاً در 1200 rpm از 0.05 mm بیشتر می شوند. شکل 4 فرکانس طبیعی فنداسیون بدست آمده از FEM با یافته های اسمیت مقایسه میکند. همانطور که مشاهده میشود، فرکانس در سرعت 1200 دور در دقیقه بود. در این شرایط، جابجایی طبیعی ساختار و جابجایی ایجاد شده توسط لرزش فن ID بترتیب 0.08 و 0.16 mm بود.

شکل 4: دامنه لرزش در مقابل فرکانس طبیعی فنداسیون و فرکانس فن

 

بنابراین، مقایسه بین سرعت فن و فرکانس طبیعی در سرعت حرکت می تواند سرعت مورد نظر را تعیین کند. اسمیت کمترین فرکانس طبیعی 70 درصدی سرعت حرکت فرکانس فن را پیشنهاد کرده است. محافظه کاری بیشتر در مدل FEM با استفاده از مقدار محدود کمتر از مدول یانگ از برای فنداسیون بتنی وجود دارد.

شکل 5: اثر در مقابل فرکانس فنداسیون طبیعی

 

شکل 5 اثرات (بترتیب برابر با ) بر روی فرکانس های طبیعی فنداسیوننشان میدهد. تغییرات فنداسیون برای کاهش دامنه های لرزش با استفاده از FEM تحلیل شدند. در این مدل، فرکانس طبیعی بصورت موقتی در مقابل مدول طرف راست بتن و مدول طرف چپ آرماتور قرار داده شد. این نشان میداد که فرکانس چطور به تغییرات در مدول مواد (برای مثال، بتن و آرماتور) وابسته است. البته، بیشتر تغییرات بررسی شده بعلت محدودیت هزینه یا فضا عملی نبودند. در ضمن، FEM می تواند ترکیب بهینه مدول بتن و آرماتور را برای بدست آمدن فرکانس طبیعی بهینه و افزایش عامل امنیت تعریف کند. بعلاوه، فرکانس توسط عامل دو و سه برآیند افزوده در بترتیب مدول کشسانی بتن و آرماتور افزایش داده شد.
بر خلاف پدیده تشدید، فرکانس طبیعی فنداسیون با سرعت حرکت باید حداقل 20 درصد تفاوت داشته باشد. با پیروی از چنین رابطه ای، محل تقاطع دو نمودار می تواند بهترین ترکیب مواد و در نتیجه بیشترین ایمنی را تعیین کند.
4.1 تحلیل خستگی
فشار دینامیک تکراری است و می تواند باعث خستگی شود. خستگی را می توان توسط ضرب کردن فشار دینامیک در ضریب خستگی محاسبه کرد. چون خستگی می تواند به فنداسیون فن های ID آسیب وارد کند، بنابراین خستگی محاسبه دقیق فنداسیون را محدود می کند. ترکیب بار همراه با این شرایط بر اساس منحنی های S-N تعیین می گردد که تعداد دوره های (N) دامنه معکوس (S) هر بار را توصیف میکند. این منحنی ها بر اساس در نظر گرفتن همه موقعیت های بار ممکن که ممکن است در حین عملیات رخ دهد و برای طول عمر فنداسیون پیش بینی گردد (معمولاً 20 سال) بصورت سالیانه ایجاد می گردند/ عمر خستگی بعنوان تعداد دوره های قبل از شکست تعریف می گردد. عمر خستگی بتن مشروط به فشارهای دوره ای را می توان از معادله زیر محاسبه کرد:

که:
= تاب فشردگی نوع شکست مورد نظر
= بزرگترین فشار فشردگی محاسبه شده بعنوان مقدار میانگین در هر بلوک فشار
= کمترین فشار فشردگی محاسبه شده بعنوان مقدار میانگین در هر بلوک فشار
= پارامتر تاب خستگی. برای بتن C5
= 12 برای ساختارهای داخل هوا
5- بحث و تحلیل نتایج و چالش ها
تحلیل اولیه FEM فنداسیون نشان داد که نقاط مهم (1 تا 15 نقطه برای داکت های مستطیلی و 16 تا 28 نقطه برای داکت های دایره ای) مدل باید بعلت موقعیت خود بیشتر ارزیابی شوند. بعلاوه، ترک های فنداسیون بتنی معمولاً نزدیک داکت ها بوجود می آید (شکل 6). بنابراین، تعداد کلی نقاط انتخاب شده حدود 28 نقطه بود، یعنی 1 تا 15 نقطه برای داکت های مستطیلی و 16 تا 28 نقطه برای داکت های دایره ای (بترتیب شکل های 7 و 8).

شکل 6 – نقطه مهم واقعی

 


شکل 7 – نقاط خمیدگی فنداسیون فن ID تحت بار استاتیک در محور ایکس برای داکت مستطیلی شکل

 


شکل 8 – نقاط خمیدگی فنداسیون فن ID تحت بار استاتیک د محور y برای داکت های دایره ای شکل

 

5.1 اثر مواد تغییر یافته و شکل داکت
این مدل تحت بار یکسان 60000 کیلوگرم برای بالای سطح با 20000 کیلوگرم بار نقطه ای طراحی شد که در همه پین ها بعنوان یک نیروی کششی در یک طرف و نیروی فشاری در طرف دیگر عمل میکرد. این مدل برای ترکیب داکت های مستطیلی و دایره ای در مدول های مختلف بتن و آرماتور تعریف شد. تعداد کلی ترکیب ها 14 مدل بود (جداول 1 و 2). داده های فشار و خمش انتخاب شده برای مطالعه از این 28 نقطه در محور Y بدست آمده اند. مقادیر خمش و فشار این نقاط تحت بار فشردگی استاتیک بترتیب بعنوان U و C نشان داده شده است. مقادیر مطابق تحت بار استاتیک کششی بعنوان Ut و Ct نشان داده شده است (شکل های 9 و 10).
شکل 7 نشان میدهد که با افزایش در بتن در طرف راست و آرماتور در طرف چپ، خمیدگی چطور برای نقاط مشخص 5 و 10 کاهش داده می شود. همچنین نشان میدهد که افزایش از 20 به چطور خمیدگی را تا 40 درصد برای نیروی فشاری کاهش میدهد، که با رنگ آبی نشان داده شده اند. اما به همان شیوه برای نقطه کششی تا 30 درصد کاهش داده خواهد شد. از دیدگاه مدول های آرمه شده می توان نتیجه گیری کرد که با افزایش در ، خمیدگی حدود 10 درصد کاهش می یابد. نیروی فشاری همچنین خمیدگی کمتری در مقایسه با نیروی کششی در هر دو شیوه خواهد داشت. در نقطه 5 برای نیروی کششی و فشاری این نتیجه گیری را میتوان کرد که در مدول های کشسانی بالا از بتن و آرماتور، تغییرات زیادی در مقایسه با مدول کم وجود نخواهد داشت. می توان از جداول 2 و 3 نتایج مشابهی را بیان کرد و برای همه نقاط توصیف کرد اما در اینجا فقط دو نقطه نشان داده شده است.

شکل 9 – اثر مختلف بر روی خمیدگی برای نقاط فشردگی (C) ، 5 و 50 و نقاط مطابق با آنها در طرف کششی دیگر

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله13    صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید

 


دانلود با لینک مستقیم


دانلود مقاله مقاله ترجمه شده تحلیل فنداسیون کارخانه های سیمانی فن ID گریز از مرکز