اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود مقاله کامل درباره ریخته گری مداوم

اختصاصی از اینو دیدی دانلود مقاله کامل درباره ریخته گری مداوم دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 23

 

ریخته گری مداوم ( مداوم ریزی )

1-8 : مقدمه :

ریخته گری شمش ها به طریقه تکباری از نظر مشخصات متالوژیکی ، تکنولوژیکی و تولیدی دارای نارسایی ها و نقایص عمده ای است که تبدیل شرایط انجماد و افزایش کمیت و کیفیت تولیدی را ایجاب می نماید و در هر یک از شاخه های متالورژی آهنی و غیر آهنی ، مهمترین مباحث تولیدی بر انتخاب بر آیند مطلوب از سه عامل متالورژی ، تکنولوژی و اقتصاد قرار دارد . در شمش ریزی که به تولید محصول نیمه تمام می انجامد ، بسیاری از عیوب و نارسایی های تولیدی ، هنگامی مشخص می گردند که کار مکانیکی نظیر نورد ، پتکاری ، پرس ، فشار کاری و ... بر روی قطعه انجام گرفته است و کار و هزینه بیشتری صرف شده است و همین مطلب دقت و کنترل در تولید شمش ها را لازم می دارد .

خواص شکل پذیری مکانیکی آلیاژها ، مستقیماً " به نرمش Ductility و تا و Strength آنها بستگی دارد و این دو مشخصه نیز شدیداً " تحت تاثیر ساختار شمش ، همگنی و یا ناهمگنی دانه های بلوری ، مک حفره و جدایش قرار دارد . مهمترین مشخصات مورد لزوم در ساختار شمش ها عبارتند از :

الف ) ریز بودن دانه ها

ب ) گرایش دانه ها از ستونی به محوری

پ ) همگن و هم اندازه بودن دانه ها

ت ) نازک بودن مرز دانه ها

ث ) همگنی شیمیایی و فقدان جدایش های مستقیم یا معکوس

ج ) کاهش مک انقباضی و نایچه

چ ) همگنی در اندازه ، شکل و پخش مک های انقباضی

ح ) کاهش مک های انقباضی پراکنده

خ ) کاهش و حذف مک های گازی و ریز مک ها

د ) حذف و کاهش ترک های درونی و سطحی

ذ ) کاهش مقدار آخال و سرباره

از مباحث قبل و آنچه که در فصول مربوط به انجماد گفته شده است ، چنین استنتاج می گردد که عیوب و نارسایی های متالولوژی ، ناشی از فقدان شرایط لازم برای سرد کردن و قدرت سرد کنندگی قالب ها می باشد که نوع آلیاژ و شکل و اندازه شمش نیز در حصول به نتیجه دلخواه اثرات قابل توجهی دارند. از نظر تکنولوژیکی و تولیدی نیز ، کندی و آهستگی ، نیاز به مکان و فضای وسیع ، دور انداز و برگشتی ها ی شمش ( در هر دو قسمت فوقانی و تحتانی ) افزایش تعداد کارگر و محدودیت در اندازه شمش ، عوامل دیگری محسوب می شوند که روشهای تکباری را محدود و برای صنعت پویای امروز نا کافی میسازند.

تحلیل عملی معایب و نیاز روز افزون به افزایش تولید ، به اصلاحاتی در روش های تکباری منجر گردید که نیازمندی های علمیو تولیدی را کفایت نمی نمود. روش ریخته گری مداوم و یا شمش ریزی مداوم بر اساس سرد کردن مستقیم تختال یا شمشال ، با طول های تقریباً محدود و زمان بار ریزی نامحدود ، فرآیند جدیدی است که قسمت اعظم نیازمندیهای فوق را برآورده ساخته و گسترش تکنولوژیکی و متالوژیکی آن هنوز ادامه دارد .

هر گاه روش یا فرایند جدیدی وارد صنعت گردد ، سال های متمادی ، بدون آنکه طرح اصلی و مکانیسم عمده آن تغییرات فاحشی پیدا کند ، مشمول تحقیقات وسیعی از دیدگاههای مختلف می گردد که به تحصیل محصولاتب بهتر و برتر می انجامد ، مانند تغییر مواد قالب ، سیستم خنک کنندگی ، مبرد و آبگرد که در شمش ریزی تکباری انجام گرفته است . هنگامی میرسد که طرحی کاملاً جدید و فکری نو و سیستمی کاملاً‌ متفاوت ابداع و اظهار می شود . در این حال ، چنانچه روش جدید ، بتواند نظر محققان و تولید کنندگان دیگر را جلب کند و یا پیش بینی تحول های جدیدی بر آن مترتب شود ، مسید تحقیقات و بررسیهای به طرف سیستم جدید گرایش یافته و کلیات آنها در روش جدیدی متمرکز می گردند . بدیهی است گاه ممکن است یک نظریه و یا طرح جدید ، برای سالیان دراز مسکوت بماند ولی چنانچه آن طرح بر موازین علمی استوار باشد و شرایط لازم عملی را در نیازهای صنعتی پیدا کند از لابلای تاریخ علمی بیرون کشیده می شود .

تغییر روش شمش ریزی از تکباری به مداوم ، شاهدی بر بیان فوق است ، زیرا تا قبل از آشنایی با مزایای ریخته گری مداوم ، شاهدی بر بیان فوق است ع زیرا تا قبل از آشنایی با مزایای ریخته گری مداوم ، همواره تحقیقات در اجزاء روش تکباری از نظر قالب ، انداز ته سر ، روش سرد کنندگی ، سیستم آبگرد ، و نظایر آن بعمل می آید و موفقیت هایی را نیز ره دنبال داشت . پس از تدوین علمی و استخراج نتایج تولیدی شمش ریزی مداوم تقریباً بیشتر تحقیقات و هزینه های مربوط متوجه این روش گردید در حالیکه استفاده از روشهای شناخته شده تکباری هنوز در مقیاس وسیعی ادامه دارد .

شمش ریزی مداوم ، روش جدیدی است که هر جند ایده و طرح های اولیه آن ره زمان بسمر "Bessemer" و سال های 1840-1850 مربوط می شود ، ولی عمر کاربردهای صنعتی آن از 50 سال بیشتر نیست . از طرف دیگر ، گشترش تکنولوژی جهانی سبب شده است که تحقیقات و طرح های مستقلی در کشورهای جهان ارائه شود و تنوع فاحشی را در انواع روش های ریخته گری مداوم پدید آورد بطوریکه مجموع طرح های ثبت شده در این مورداز 500 نوع نیز متجاور

3-2-8 : مکانیسم سرد کردن

در حقیقت مهم ترین وجه تمایز روش های مداوم ریزی بر روش های تکباری ، سرد کردن سریع و گاه بدون واسطه شمش یا محصول است که عمده مختصات متالوژیکی از این مکانیسم ناشی می گردد . استفاده مستقیم از آب جاری ، آب فشان آب اتمیزه ( پودر شده ) ، مخلوط آب و روغن مهمترین روش های سرد کنندگی را حاصل نموده اند ، در این حال استفاده از قالب یا هر محفظه نگاهدارنده به منظور انجماد اولیه و ایجاد استحکام در پوسته لازم به نظر می رسد . در حقیقت تنوع قالب و مکانیسم های سرد کردن را نمی توان از هم تفکیک نمود از هم تفکیک نمود چه تاثیرات هر یک بر دیگری کاملاً به اثباط رسیده است . تاثیر قالب و یا هر محفظه نگاهدارنده در انجماد اولیه و تا و پوسته کاملاً شناخته شده است و در برخی از موارد کل انجماد در برخوردهای مذاب و قالب انجام میگیرد و قسمتهایی جزیی و درونی به سرد کنندگی شدیدی نیاز ندارند . در هر صورت حرارتی ، تاو ، و مقاومت به فرسایش و خورندگی در قالب ها از اهمیت ویژه ای برخور دارند . ولی در شمش های حقیقی عموماً سیستم سرد کنندگی ثانویه ، همراه با سیستم اولیه " قالب " شرایط تکمیلی فرایند انجماد را حاصل می کنند .


دانلود با لینک مستقیم


دانلود مقاله کامل درباره ریخته گری مداوم

مقاله درباره ریخته گری تحت فشار

اختصاصی از اینو دیدی مقاله درباره ریخته گری تحت فشار دانلود با لینک مستقیم و پر سرعت .

مقاله درباره ریخته گری تحت فشار


مقاله درباره ریخته گری تحت فشار

ریخته گری تحت فشار

 

ریخته گری تحت فشار نوعی ریخته گری می باشد که مواد مذاب تحت فشار بداخل قالب تزریق می شود . این سیستم بر خلاف سیستم ریژه که مذاب تحت نیروی وزن خود بداخل قالب می رود امکانات تولید قطعات محکم وبدون مک می باشد. دایکاست کوتاهترین راه تولید یک محصول از فلز می باشد .


مزایای ریخته گری تحت فشار:

1-تولید انبوه و با صرفه
2-تولید قطعه مرغوب باسطح مقطع نازک
3-تولید قطعات پیچیده
4-قطعات تولید شده در این سیستم از پرداخت خوبی بر خوردار است.
5-قطعه تولید شده استحکام خوبی دارد.
6-در زمان کوتاه تولید زیادی را امکان می دهد.

معایب ریخته گری تحت فشار :

1-هزینه بالا
2-وزن قطعات در این سیستم محدویت دارد حداکثر 3 8 K g
3-از فلزاتی که نقطه ذوب آنها در حدود آلیاژ مس می باشد می توان استفاده نمود.


ماشینهای دایکاست:

این ماشینها دو نوع کلی دارند:

1-ماشینهای با محفظه تزریق سرد: cold chamber در این نوع سیلندر تزریق خارج از مذاب بوده و فلزاتی مانند A L و C u و m g تزریق می شود و مواد مذاب توسط دست به داخل سیلندر تزریق منتقل می شود .
2-ماشینهای با محفظه تزریق گرم : Hot chamber در این نوع سیلند تزریق داخل مذاب و کوره بوده و فلزاتی مانند سرب خشک و روی تزریق می شود و مذاب اتوماتیک تزریق می شود.

محدودیتهای سیستم سرد کار افقی:

1-لزوم داشتن کوره های اصلی و فرعی برای تهیه مذاب و رساندن مذاب به داخل سیلندر تزریق
2- طولانی بودن مراحل کاری
3-امکان بوجود آمدن نقص در قطعه بدلیل افت حرارت مذاب آکومولاتور یک سیلندر دو طرفه بازشوکه داخل آن یک پیستون شناور وجود دارد که یک سمت آن فشار گازاز نوع گاز بی اثر مانند گاز ازت که در سیستم با D Oمشخص می باشد ، تحت فشار است و در سمت دیگر فشار روغن که در سیستم با P N مشخص می باشد.

وظیفه آکو مولاتور:
چون پیستون شناور آکومولاتور بوسیله فشار روغن شارژ شده است و پشت آن هم فشار متراکم گاز وجود دارد در زمان تزریق وقتی فشار روغن در یک سمت کم می شود . فشار گاز با سرعت زیادی پیستون را به سمت روغن هدایت نموده و باعث سرعت زیادی در ضربه دوم تزریق شده و مذاب را در مدت زمان کوتاه بداخل حفره قالب می راند .

نقش آکومولاتور:
اگر این اجزاء عمل نکند و در واقع نقشی در تزریق مذاب نداشته باشد قطعات دارای مک و بد تزریقی بوده و استحکام لازم راندارد.


بسته نگه داشتن قالب : (قفل قالب D I E L O C K )

فشارهایی که در ریخته گری تحت فشار در فلز مذاب به وجود می آیند مستلزم داشتن تجهیزات ویژه جهت بسته نگهداشتن قالب می باشد تااز فشاری که برای باز کردن قالب در طی تزریق بوجود می آیدوباعث پاشیدن فلزاز سطح جدا کننده قالب می شود اجتناب شده و تلرانسهای اندازه قطعه ریختگی تضمین گردد. قالبهای دایکاست بصورت دو تکه ساخته می شوند یک نیمه قالب به کفشک ثابت ( طرف تزریق) و نیمه دیگر به کفشک متحرک ( طرف بیرون انداز) بسته می شود . قسمت متحرک قالب بوسیله ماشین روی خط مستقیم به جلو و عقب می رود و به این ترتیب قالب دایکاست باز و بسته می شود. بسته نگهداشتن هردونیمه قالب طی تزریق ،بسته به طراحی ماشین ریخته گری تحت فشار با روشهای مختلف صورت می گیرد. یک روش اتصال با نیرو است که از طریق اعمال یک نیروی هیدرولیکی بر کفشک متحرک به وجود می آید.روش دیگر،اتصال با فرم به کمک قفل و بند های مکانیکی صورت می گیرد این قفل و بند ها فقط با یک نیروی کوچک پیش تنش کار می کنند . در هر دو مورد یک بسته نگهدارنده ایجاد می گردد که با نیروی به وجود آمده باز کننده در قالب دایکاست مقابله می کند. نیروی باز کننده نتیجه فشار تزریق است که هنگام پر کردن قالب ایجاد می گردد.

سیستم قفل قالب به روش اتصال با نیرو معمولا شامل قسمتهای زیر است :

1-دومیز ثابت جلو و عقب و یک میز متحرک میانی
2-چهار عدد بازوی راهنما و هشت عدد مهرة فیکس
3-سیلندر محرک میز متحرک

قدرت قفل شوندگی قالب بستگی به موارد زیر دارد:

1-قدرت پمپ
2-قدرت سیلندر محرک میز
3-قدرت چهار عدد میله راهنما
4-زاویه شیب گوه ها

قالبهای دایکاست:
قالب دایکاست عبارت است یک قالب دائمی فلز ی بر روی یک ماشین ریخته گری تحت فشار که برای تولید قطعات ریختگی تحت فشار بکار می رود. هدایت کردن فلز مذاب به درون حفره قالب توسط کانالهایی انجام می گیرد که به آن سیستم مدخل تزریق – راهگاه - گلویی گفته می شود . هر قالب دایکاست از دو قسمت تشکیل شده است تا بتوان قطعه را بعد از انجماد از حفره قالب بیرون آورد. اجزاء قالب دایکاست که با فلز ریختگی مذاب در تماس هستند از فولاد گرم کار و یا از آلیاژهای مخصوص نسوز و مقاوم در برابر تغییر دما ساخته می شود .

ساختمان قالب:
در زیر جنبه های مهم طراحی قالب را مورد برسی قرار می دهیم:

تقسیم قالب:
همانطور که ذکر شدهر قالب دایکاست بصورت دو تکه است یعنی قالب ازیک نیمه ثابت(طرف تزریق)ویک متحرک (طرف بیرون انداز)تشکیل شده است . نیمه ثابت قالب (نیمه تزریق قالب)به کفشک ثابت ماشین ریخته گری تحت فشار مونتاژ می شود . در حالی که نیمه متحرک قالب (نیمه بیرون انداز قالب )به کفشک متحرک محکم می شود هر دو نیمه قالب در حالت آماده تزریق بسته هستند و با نیروی بسته نگهدارنده ای که از طرف ماشین ایجاد می گردد،در حالت بسته نگه داشته می شوند . سطح تماس هر دو نیمه قالب ، سطح جدایش قالب نامیده می شود. برای اجتناب از نفوذ فلز مذاب به خارج بایستی سطح قالب کاملاً آب بندی و از این جهت به صورت سطح سنگ زنی شده و یا هم سطح شده باشد .دقت انطباق صفحات قالب که روی هم قرار می گیرند اهمیت زیادی دارند .بهتر است که لبة خارجی در هر دو صفحه قالب حدواً 1 m m تا 2 m m تحت زاویه 4 5 پخ زده شوند . به این ترتیب از خرابی لبه ها توسط ضربه یا برخورد که منجر به تغییر شکل لبه ها می گردد و می توانند دقت انطباق را بر هم بزنند اجتناب می شود .
در خاتمه یک مطلب در مورد تعیین ابعاد سطح جدایش قالب ذکر می گردد که سطح جدایش دور تا دور حفره قالب یک سطح به اندازه کافی بزرگ آب بندی را بوجود بیاورد.

تخلیه هوای قالب :
یکی از شرایط مهم برای تولید قطعات مهم تولید تزریقی بدون عیب آن است که در موقع تزریق مقدار گازهای محبوس در ساختار قطعه محبوس در ساختار قطعه تا حد امکان کم باشد . و این تعداد کم تخلخلهای گازی با ابعاد کوچک میکروسکوپی به هم فشرده شوند . بدین ترتیب دو خواسته مطرح می گردد .
اولاً باید در پروسه تزریق تا حد امکان هیچ هوایی از تجهیزات تزریق به درون مذاب نفوذ نکند و ثانیاً هوای موجود در کانال تغذیه و حفره قالب بتواند هنگام تزریق بطور کامل خارج گردد.
فشردن تخلخلهای باقیمانده درقطعه از طریق اعمال فشار نهایی بعد از پر شدن قالب صورت می گیرد این فشار نهایی را می توان از طریق اتصال یک مولتی بلیکاتور افزایش داد.اولین خواسته به خصوص به واحد ریخته گری و در اینجا قبل از هر چیز به سیستم کنترل محرک ریختگی و مربوط می باشد . بایستی توجه داشت که پیستون مذاب آهسته حرکت کرده و فلز مذاب قبل از آنکه با سرعت برای پوشیدن قالب شتاب بگیرد در محفظه انتقال جمع گردد .تجمع در محفظه انتقال بدون تشکیل یک موج برگشتی از نفوذ هوا به درون محفظه انتقال جلوگیری کرده و شرایط را برای خروج بلا مانع هوای وارد شده از طریق جریان فلز به درون کانال تغذیه وحفره قالب و سپس از آنجا توسط کانالهای تخلیه هوا به بیرون آماده فرایندهای ویژه ، مانند حرکت شتابدار پیستون مذاب ، تأثیرمبتنی بر کاهش هوا و ناخالصیهای گازی در فلز تزریقی می گذارند.
درخواست دوم مربوط به تخلیه هوای حفره قالب مربوط است . هوای نفوذ ی توسط جریان فلز بایستی به راحتی خارج گردد. بنابر این بایستی کانالهایی برای تخلیه هوا در نظر گرفت تا هوای گازهای قالب بتوانند از طریق آنها به بیرون انتقال یابند تخلیه ناقص هوا از قالب یکی از علتهای رایج عدم نفوذ کیفیت قطعه می باشد . برحسب تجربه پایین بودن بیش از اندازه سرعت فلز باعث عیوب ریختگی مانند سطح خارجی زبرورگه دار تزریق سرد و ناخالصیهای گازی می گردد .
بنابر این سرعت جریان فلز مذاب د رحفره قالب تاوقتی که قالب کاملاً پر شود با ازدیاد فشار گاز ( در نتیجه تخلیه خیلی آهسته هوا) کاهش می یابد. فشار گاز در حفره قالب از گلوئی تا اخرین ناحیه پر شده حفره قالب افزایش می یابد ، با توجه به میزان اثر گذاری تخلیه هوای قالب ، اندازه حد اکثر فشار گاز متفاوت است . تجمع عیوب ریختگی در آخرین قسمت های پر شده قطعه تزریقی همیشه نمایانگر آن است که تخلیه هوا ناقص انجام گرفته است . بهبود و توسعه تخلیه هوای قالب در این نقاط از حفره قالب خطر عیوب ریختگی را کاهش می دهد ، زیرا به این ترتیب فشار گاز پایین آمده و متناسب با آن سرعت جریان فلز مذاب کمتر می گردد .
به این ترتیب بایستی در قالب دایکاست کانالهایی با ابعاد کافی برای سطح مقطع جهت تخلیه هوا تغییر گردند همه سطوح انطباقی قسمت های قالب در حفره قالب (مغزیها قالب، ماهیچه ها ثابت و متحرک ، پینهای پران ) و طبیعتاً سطح جدایش قالب نیز در تخلیه هوا مؤثر هستند اما معمولاً این مقاطع که در تخلیه هوا نقش دارند به آن اندازه ای نیستند که هوای موجود در قالب تزریق را در مدت زمان بسیار کوتاه پر شدن قالب بطور کامل تخلیه نمایند . سطوح جدایش قالب بویژه در قالب های جدید غالباً با دقت زیادی ماشینکاری و آب بندی می گردند . بطوری که سهم آنها در تخلیه هوا ناچیز است .
کانال های تخلیه هوا در سطح جدایش قالب مرز کاری می گردند و از کناره حفره قالب یا از سر باره گیره ها بصورت خط مستقیم تا لبة خارجی هدایت می شود.
عرض کانال ها در حدود 10mm تا 15mm و عمق آنها 0.1mm تا 0.2 mm است فلز مذاب به درون کانال های تخلیه هوا نفوذ می کنند ، اما طول نفوذ برای یک کانال با عمق 0.2mm بسیار کوتاه است . برای جلوگیری از تخلخل های ایجاد شده در اینجا ، کانالهای تخلیه هوا در سر باره گیره ها قرار داده می شود و این سر باره گیره ها در پلیسه گیری ان جدا می گردند.
طول کانالهای تخلیه هوا باید حداقل 100 mm باشد و به همان اندازه بایستی ما برای آن بر روی سطح جدایش در اختیار باشد . وجود کانالهای تخلیه هوا فقط در یکی از دونیمه قالب در سطح جدایش کافی است.
بهتر است همیشه از ماهیچه های ثابت موجود در قالب دایکاست نیز جهت تخلیه هوای قالب بهره برد. برای این منظور با یک لقی انطباق حدوداً 0.05 mm در صفحه قالب قرار داده می شوند.
باید به فاصله تقریباً 100mm از پشت دیواره قالب ، یک گاه در نظر گرفته شود تا هوای رانده شده جمع آوری و سپس از طریق سطح ایجاد شده بر روی شفت ماهیچه به خارج انتقال یابد.همچنین سطوح لغزش ماهیچه های متحرک ، که دارای یک لقی انطباق زیاد در حدود 0.1 mm هستند و نیز پینهای پران که معمولاً بالقی کمتر از 0.03 mm نصب می گردند در تخلیه هوا مؤثرند.
در حالی که روشهای ممکن جهت تخلیه هوای قالب که از آنها نام برده شد ، تنها برای آن بکار می روند تا هوای رانده شده از فلز تزریقی را از حفره قالب دور نگهدارند و از تشکیل یک فشار معکوس و مزاحم گاز در حفره قالب جلوگیری کنند ، بایستی از طرف دیگر تدابیری نیز جهت انتقال هوای محبوس در جریان فلز به بیرون اندیشد معمولاً تا حدودی تشکیل حرکت گردابی در جریان پر کننده اجتناب ناپذیر است، بطوری که مثلاً در تغییر مسیر جریان و در برخورد ماهیچه های بر آمده و دیوارهای قالب و همچنین توسط یک جریان برگشتی امکان تشکیل گرداب وجود دارد بعلاوه باقیمانده مواد جدایش با جریان تزریق همراه شده و یا توسط آن شسته می شوند از این رو اتخاذ تدابیر بایستی هوا ، گازهای قالب و یا اکسید های به وجود آمده توسط حرکت گردابی فلز مذاب جمع اوری و از حفره قالب خارج گردند برای این منظور از قسمتهای بنام سر باره گیرها مناطق فرز گازی شده کوچکی در صفحه قالب نزدیک کنارحفره قالب می باشند که توسط یک گلویی نازک به حفره قالب متصل می گردند.به این ترتیب فلز مذاب به درون سر باره گیر سر ریز می شود . با توجه به اینکه بخصوص ابتدای جریان تزریق ، یعنی جبهه جریان ، از هوا ، اکسیدها و باقیمانده مواد جداکننده فنی می باشد سر باره گیرها بویژه در جایی در نظر گرفته می شوند که در آنجا جبهه جریان به دیواره قالب پرتاب می گردد. بنابراین سر باره گیر فلز تزریقی را که دیگر شرایط مطلوب کیفی را دار نمی باشد گرفته و از حفره قالب دور می کند .
برای طراحی صحیح سر باره گیر بایستی تصور روشنی از نحوه تغییرات جریان داشت. سرباره گیره ها بر حسب نوع گلویی ، که نحوه تغییرات جریان را مشخص میکنند همیشه در ناحیه انتهای جریان پرکننده قرار داده می شوند .

گرم کردن و خنک کردن قالب

گرم کردن قالب :
قالب دایکاست بایستی بر روی ماشین دایکاست قبل از شروع بکار تا دمای لازم گرم گردد. تحت هیچ شرایطی نبایستی با یک قالب سرد و یا به قدر کافی خنک نشده ریخته گری را آغاز نمود ، در غیر این صورت تنش های حرارتی بالایی در سطح خارجی قالب پدید می آیند ، که معمولاً از بین نمی روند و باعث تشکیل ترکهای زود رس ناشی از سوختگی می گردند .
دمای گرم کردن قالب بایستی تقریباً به اندازه میانگین دمای قالب که برای ریخته گری ضروری است باشد ( آلیاژ آلومینیم از 250 تا 310 ) بطور کلی اگر در مرز بالای درجه حرارت های توصیه شده برای قالب بهتر بوده و طول عمر قالب می تواند بطور قابل ملاحظه أی افزایش یابد ، زیرا اختلاف بین دمای ریخته گری و دمای قالب کمتر است . اندازه تنشهای متناوب حرارتی به عنوان عامل تشکیل ترکهای ناشی از سوختگی به دمای قالب بستگی دارد . هر چه افت حرارتی بین دمای ریختگری و دمای قالب کمتر باشد ، به همان نسبت نیز انبساط در سطح خارجی قالب و خطر ایجاد ترک کمتر است.
برای گرم کردن از دستگاه های گرم کننده به تنهایی و همراه با دستگاه های خنک کننده استفاده می شود. مشعلهای گازی بخاطر اینکه اجزاء بر جسته قالب ، ماهیچه های نازک و پینهای پران شدید تر از نواحی ضخیمتر قالب گرم می کنند مناسب نمی باشند در این گونه مواد خطر گرم شدن بیش از اندازه موضعی در فولاد عملیات حرارتی شده قالب وجود دارد، که تأثیری مانند عملیات بازگشت پس از آن به جا می گذارد و می تواند باعث کاهش استحکام گردد. برای این منظور گرم کننده های مادون قرمز و یا گرم کننده های سرامیکی ، گازی که توزیع حرارتی نسبتاً یکنواختی بوجود می آورند و مناسب ترند این نوع دستگاهها به شکل قاب و یا جعبه ساخته شده و بین دو نیمه باز شده قالب قرار داده می شوند . اما در اینجا هم بایستی توجه داشت که هیچ جایی بیش از اندازه گرم نشود و یا در نواحی مشخص از قالب سد حرارتی ایجاد نگردد.

خنک کردن قالب :
درهر سیکل تزریقی گرما به قالب دایکاست انتقال می یابد برای بدست اوردن قطعه تزریقی بایستی فلز مذاب منجمد ، تا دمای انجماد سرد گردد. برای اینکه بتوان قطعه تزریقی را از قالب گرفت و یا به بیرون پرتاب نمود ، بایستی آنرا تا دمای باز هم پایینتر خنک نمود . این بدان معنی است که برای خنک کردن مطلوب فلز تزریقی بایستی مقداری گرمای زیادی از طرف قالب دریافت و انتقال داده شود. خواص حرارتی جنس ماده قالب به گونه أی که این تخلیه گرمایی امکانپذیر می گردد اما بایستی این گرما از خود قالب هم خارج شود و این وظیفه سیستم خنک کننده قالب است . به عنوان ماده خنک کننده ، معمولاً از آب و بعضاً نیز از روغن موجود در دستگاههای تنظیم دما ، در صورتی که هم برای گرم کردن و هم برای خنک کردن بکار رود استفاده می شود .
برای قطعات تزریقی کوچک و یا جدار بسیار نازک ممکن است بتوان از خنک کردن قالب بطور کامل صرفنظر نمود ، به شرطی که گرمای ارائه شده از طریق افزایش تعداد تزریق ها بیشتر از گرمای پس داده شده به بهترین وجه از طریق تشعشع ، همرفت و هدایت نباشد . طبیعی است که این موضوع برای ریخته گری آلیاژ های با دمای ذوب نسبتاً پایین هم مانند قطعات دایکاست کوچک و جدار نازک سرب و قلع صادق است .
حتی د رقطعات دایکاست جدار ضخیم هم گاه نیازی به خنک کردن قالب نیست ولی معمولاً در ماشینهای اتوماتیک سریع با محفظه ضروری است .
برا ی خنک کردن قالب، کانالهایی در قالب دایکاست برای جریان یافتن ماده خنک کننده تعبیه می گردد این کانال ها بطرف ناحیه ایاز قالب که با قطعه تماس دارد هدایت می شوند یعنی جایی که انتقال گرما از قطعه تزریقی یه سمت قالب آغاز می گردد اگر صفحه قالب فاقد مغزی قالب باشد کانالهای خنک کن در داخل صفحه قالب فاقد مغزی قالب باشد کانالهای خنک کن در داخل صفحه قالب سوراخکاری شده و به مدار سیستم خنک کننده مربوط متصل می گردد.
کانال های خنک کن در قسمتی از قالب که بایستی خنک گردد به روشهای گوناگون طراحی می گردند . نحوه هدایت کانال بایستی طور انتخاب شود که بخصوص ناحیه ای از قالب که پشت حفره قالب قراردارد بتواند خوب خنک گردد.
کانال های درون قالب به صورت مستقیم هدایت می شوند اما درعین حال تغییر زاویه و تطبیق این کانال ها به لبه های قالب هم امکانپذیر است .

و ...
در فرمت word
قابل ویرایش
در 20 صفحه


دانلود با لینک مستقیم


مقاله درباره ریخته گری تحت فشار

تحقیق و بررسی در مورد گزارش کار آموزی ریخته گری 47 ص

اختصاصی از اینو دیدی تحقیق و بررسی در مورد گزارش کار آموزی ریخته گری 47 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 39

 

گزارش کارآموزی :

با عنوان :

ریخته گری

مدیریت: چدن اداره کل : تولید اداره : مهندسی

نام استاد کارآموزی :

دکتر امیر حسنی

نام سرپرست :

مهندس ترابی

نام دانشجو :

امیر درافشانی

دانشگاه : سمنان

تاریخ :

از 20 / 4 / 1383 تا 20 / 6 / 1383

فهرست

متالورژی چدن . . . . . . . . . . . . . . . . . . . . . . . . . 3

ماهیچه سازی . . . . . . . . . . . . . . . . . . . . . . . . . 8

قالب گیری . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ذوب ریزی . . . . . . . . . . . . . . . . . . . . . . . . . 15

کوره های القایی . . . . . . . . . . . . . . . . . . . . . . . . 18

خط دیزاماتیک . . . . . . . . . . . . . . . . . . . . . . . . 23

خط واگنر . . . . . . . . . . . . . . . . . . . . . . . . . 24

عملیات تکمیلی . . . . . . . . . . . . . . . . . . . . . . . . 25

عیوب قطعات ریختگی . . . . . . . . . . . . . . . . . . . . . 29

متالورژی چدن

چدن که درصد کربن تشکیل دهنده آن اغلب بیش از 2% می باشد دارای انواع مختلف است. فرق اساسی چدن با فولاد در این است که فولاد نمی تواند گرافیت آزاد کند ولی چدن یا به طور خود به خود یا با عملیات حرارتی گرافیت آزاد می کند.

تقسیم بندی چدن ها :

چدن

سفید بدون گرافیت آزاد با گرافیت کروی با گرافیت ورقه ای

مارتنزیتی پرلیتی مارتنزیتی بینیتی آستنیتی پرلیتی فریتی

چدن چکش خوار(مالیبل)

پرلیتی فریتی

چکش خوار مخصوص مغز سفید مغز سفید مغز سیاه

کربن در چدن به دو صورت عنصری(گرافیت)و ترکیب شده(کاربید)می باشد ,کربن جزء ناپایدار کاربید می باشد که سرد کردن سریع باعث پا پرجاماندن کاربید و سرد کردن آرام باعث تجزیه

و تولید گرافیت می شود ( Fe3c 3Fe +c )

مراحل مختلف گرافیت زایی عبارتند از :

گرافیت زایی در طول انجماد

گرافیت زایی با رسوب کربن از طریق آستنیت

گرافیت زایی در طول تحول اوتکتویید

مقدار گرافیت زایی باعث تغییر زمینه می شود به طوریکه گرافیت زایی زیاد زمینه را فریتی و در حد متوسط آن زمینهء فریت پرلیتی و اگر ناچیز باشد زمینه پرلیتی می گردد.

سیلیسیم : در حدود 3-1 % به چدن خاکستری اضافه می شود که گرافیت زایی را ترقی می دهد افزایش زیاد سیلیسیم نقطه اوتکتیک و اوتکتویید دیاگرام را به سمت چب می برد

درصد سیلیسیم 3/0 - 3 / 4 = درصد کربن اوتکتیک

از نظر ساختار میکروسکوپی سیلیسیم به صورت حل شده در فریت یافت می شود که باعث سخت شدن فریت میگردد,فریت در آهن خالص دارای سختی 90-80 برینل می باشد که با اضافه کردن درصدی سیلیسیم به 130-120 برینل می رسد.

گوگرد : اضافه کردن آن تا 25% در نگهداری ساختار به صورت کاملا"پرلیتی کمک می کند,اضافه کردن بیشتر آن باعث پایداری کاربید شده که سختی آن نامطلوب و قابلیت ماشین کاری پایین دارد.

منگنز :منگنز نیز در برابر گرافیت زایی مقاومت می کند که با ترکیب با گوگرد تشکیل mn s))

داده تا ساختار پرلیتی حفظ شود.

35 /0+ درصد سیلیسیم × 3 = درصد منگنز که سبب توسعه ساختار پرلیتی میشود

خو ا ص مکا نیکی چد ن خا کستر ی :

استحکام فشاری بالا

استحکام کششی پایین

مقاوم در برابر خستگی


دانلود با لینک مستقیم


تحقیق و بررسی در مورد گزارش کار آموزی ریخته گری 47 ص

مقاله ریخته گری آبکاری کروم

اختصاصی از اینو دیدی مقاله ریخته گری آبکاری کروم دانلود با لینک مستقیم و پر سرعت .

مقاله ریخته گری آبکاری کروم


مقاله ریخته گری آبکاری کروم

لینک پرداخت و دانلود در "پایین مطلب"

فرمت فایل: word (قابل ویرایش و آماده پرینت)
تعداد صفحات 51

مقدمه

آبکاری کروم

نیکل یکی از مهمترین فلزاتی است که در آبکاری به کار گرفته می‌شود. تاریخچه آبکاری کروم به بیش از صدها سال پیش باز می‌گردد این کار در سال 1843 هنگامی که R.Rotlger توانست رسوبات کروم را از حمامی شامل سولفات کروم و آمونیوم بدست آورد آغاز گردید بعد از آن Adams اولین کسی بود که توانست آبکاری کروم را در موارد تجاری انجام دهد. کروم رنگی سفید شبیه نقره دارد که کمی متمایل به زرد است و به راحتی صیقل‌پذیر و دارای خاصیت انبساط و انقباض? جوش‌پذیر بوده و مغناطیسی می‌بلاشد. آبکاری با کروم اساسا به منظور ایجاد یک لایه براق برای یک لایه بعدی مانند کروم و به منظور فراهم آوردن جلای سطحی خوب و مقاومت در برابر خوردگی برای قطعات فولادی? برنجی و حتی بر روی پلاستیکهایی که با روش‌های شیمیایی متالیزه شده‌‌‌اند به کار می‌رود. مواد شیمیایی که در الکترولیتهای کروم به کار می‌روند عبارتنداز:

 

  • نمک فلزی (مهمترین آنها سولفات کروم است و همچنین از کلرید کروم و سولفومات کروم نیز استفاده می‌شود.)

دانلود با لینک مستقیم


مقاله ریخته گری آبکاری کروم

دانلود پاورپوینت ریخته گری Casting

اختصاصی از اینو دیدی دانلود پاورپوینت ریخته گری Casting دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت ریخته گری Casting


دانلود پاورپوینت ریخته گری Casting
فرآیند ریختن و انجماد فلز مذاب ریخته شده به داخل قالب. در فرآیند ریخته گری ماده جامد قابل ذوب تاحد مناسب حرارت داده شده سپس در یک حفره خالی یا قالب ریخته شده تا پس از انجماد به شکل موردنظر درآید. در نتیجه طی یک مرحله، تهیه هرشکل ساده یا پیچیده از هر فلز قابل ذوب امکان پذیر است.
 
محدوده اندازه و وزن قطعات قابل تولید به روش ریخته گری بسیار وسیع است و از یک قطعه یک میلیمتری با وزن کمتر از یک گرم (مانند دکمه، قطعات زیپ، طلا و ...) تا قطعات بزرگ چند تنی (مانند پروانه و قطعات کشتی) را شامل می شود.
 
فرآیند ریخته گری دارای امتیازات قابل توجهی در ساخت اشکال پیچیده، قطعات با قسمتهای توخالی و یا حفره های داخلی، قطعاتی با سطوح منحنی شکل نامنظم، قطعات خیلی بزرگ و قطعات ساخته شده از فلزاتی که ماشینکاری آنها دشوار است، می باشد.
 
عمده ترین اختلاف بین روشهای مختلف ریخته گری، جنس قالب (ماسه، قلز، سرامیک و ...) و نحوه ریختن مذاب (ثقلی، خلاء، فشار کم یا زیاد و ...) می باشد.
 
برخی از اصطلاحات رایج در ریخته گری که اکثرا” قطعات و تجهیزات مورد استفاده بوده به صورت زیر می باشند:

درجه:  یک قاب صلب فلزی یا چوبی است که توده مدل سازی شده را   نگه می دارد.

ماهیچه (Core): از ماسه یا فلز ساخته شده و با قرار گرفتن در قالب،   موجب ایجاد سطوح داخلی مانند سوراخ یا گذرگاه مایع خنک کننده می   شود.

تکیه گاه ماهیچه: قسمتی اضافی است که برای قراردادن و حفظ ماهیچه   درون قالب، در مدل ماهیچه و یا قالب ایجاد می شود. سپس ار ترکیب   قالب و مجموعه ماهیچه، حفره قالب بدست می آید که در حفره شکل   یافته فلز مذاب ریخته می شود و پس از انجماد به شکل مطلوب در می آید.

  - تغذیه کننده (Riser): حفره اضافی که در قالب تعبیه و با فلز مذاب پر   می شود. وظیفه آن جبران انقباض قطعه می باشد. تغذیه کننده باید   آخرین قسمتی باشد که منجمد می شود. هرچه میزان انقباض کمتر باشد،   عیوبی مانند اعوجاج و حفره هم کمتر خواهد بود.

سیستم راهگاهی: شبکه ای از کانالهای به هم پیوسته است که برای انتقال فلز مذاب به حفره قالب استفاده می شود.  

حوضچه مذاب: قسمتی از سیستم راهگاهی است که در ابتدای ورود ماده مذاب به قالب قرار دارد و ماده مذاب از پاتیل (یا چمچه) به داخل آن ریخته می شود.

خط یا سطح جدایش (Parting Line): سطح مشترک جداکننده دو نیمه درجه قالب یا مدل و دو نیمه ماهیچه

شیب: حالت مخروطی مدل یا قطعه که امکان خروج آن را از قالب فراهم می سازد.

فرآیند انجماد

تغییر حالت یا تغییر فاز فلز از حالت مایع به جامد را عمل انجماد می گویند. در اثر انجماد، سیستم فلز به حالت پایدارتر با انرژی آزاد کمتر تغییر فاز خواهد داد. عامل ایجاد بسیاری از ویژگیهای ساختمانی که در نهایت کنترل کننده خواص محصول هستند، انجماد است. همچنین بسیاری از نقایص ریخته گری از قبیل تخلخل و انقباض جزیی از این فرآیند هستندو در صورتی که در این فرآیند دقت کافی وجود داشته باشد، این عیوب قابل کاهش و یا حتی حذف می باشند.  

سرعت سرد کردن سیستم نمایانگر تعییر درجه حرارت نسبت به زمان می باشد. این منحنی برای فلزات خالص به صورت زیر می باشد.

در دمای انجماد، برای مدت زمانی درجه حرارت فاز مایع ثابت مانده و پروسه انجماد فلز خالص اتفاق می افتدو در پایان این زمان، کل سیستم از فاز جامد تشکیل یافته و به محض خاتمه پروسه انجماد، درجه حرارت فاز جامد هم مطابق نمودار کاهش می یابد.

 

انجماد در فلزات از دو پروسه جوانه زنی و رشد جوانه ها تشکیل یافته است. به تعداد جوانه های رشد یافته، دانه (Grain) در فلز خواهیم داشت.

 

 

شامل 38 اسلاید powerpoint


دانلود با لینک مستقیم


دانلود پاورپوینت ریخته گری Casting