اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درباره ریاضیات مهندسی

اختصاصی از اینو دیدی تحقیق درباره ریاضیات مهندسی دانلود با لینک مستقیم و پر سرعت .

تحقیق درباره ریاضیات مهندسی


تحقیق درباره ریاضیات مهندسی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 45

 

ریاضیات مهندسی:

فصل اول: بررسی های فوریه:

مقدمه: تفکیک یک تابع به چند جزء مختلف و یا بسط آن به یک سری گسترده از توابع دارای بورد کاربردی مختلف در ریاضی و فیزیک است، یکی از این موارد بسط توابع برحسب مجموعه ای از توابع هارمونیک مثلثاتی با فرکانسها و دامنه ای مختلف است. در این فصل ضمن آشنایی قدم به قدم به اصول این روش با کاربردهای حاصل از آن نیز آشنا می شویم.

1-1- توابع متناوب: اگر شکل تابع در فواصل منظم تکرار شود آنرا تناوب گوئیم.

در مورد یک تابع متناوب می توان نوشت:

(1) f (x+T) = f(x)

در این رابطه f تابعی از متغیر x و دوره تناوب T می باشد.

براساس این تعریف ملاحظه می شود که اگر g,f توبام هم پریود باشند، تابعی که به صورت زیر تعریف می شود نیز با آنها هم پریود است.

(2) h = (f + (g

sin و cos از جمله توابع متناوبند.

Sin x 2

Cos x

مثال: دوره تناوب Sin x + 3 Cos x چقدر است؟

Sin x 2(

Cos x (

بنابراین دوره تناوب تابع مذکور 2( می باشد.

به این ترتیب دوره تناوب مجموعه ای توابع به صورت زیر برابر 2( خواهد بود.

(3)f(x)=a.+a1cosx+a2cos2x+…+anconx+b.+b1sinx+b2Sin2x+…+bnSinx

در بخشهای بعد دیده می شود که می توان برای تابعی با دوره تناوب 2( ضمن محاسبه ظرائب a1 تا a2 یک سری مثلثاتی مثل رابطه (3) پیدا کرد.

مثال: کوچکترین دوره تناوب توابع زیر را بدست آورید:

الف) sinx ب) sin2x ج) sin2(x د)

T=2( T=( T=1 T=T

هـ) sin2(nx و) ز)

T=1/x T=T/n T=4

ح) ط) 3sin4x+cos4x

T=12( T=(/4

1-2- توابع متاعد:

دو تابع f و g را در فاصله (a,b) عمود بر هم گوئیم هرگاه داشته باشیم:

 

که به اختصار آنرا به صورت (f.g)=0 نمایش می دهیم. براین اساس:

(Cosmx, Sin nx)=0

(Sin mx, Sin nx)=0

(Cos mx, Sin mx)=0

در فاصله (0,2) تمام این توابع بر هم عمود هستند.

 

 

 

 

توابع تناوب را اعم از اینکه دارای دوره تناوب 2( باشد یا نباشد می توان برحسب توابع هامونیک cos, sin نوشت. بسط حاصل از تفکیک یک تابع به اجزاء هارمونیکی یک سری فوریه می گوئیم. اکنون به معرفی سری فوریه می گوئیم.

1-3-1- بسط توابع دوره تناوب 2(

تابعی را با دوره تناوب 2( در نظر بگیرید. این تابع را با سری مثلثاتی رابطه (3) می توان جایگزین کرد یعنی می توان نوشت:

 

برای اثبات این ادعا لازم است ضرائب a0، an و bn را محاسبه کنیم. محاسبه این ضرائب با توجه به خاصیت متعاصر تابع های هارمونیکی قابل انجام است.

مثلا برای محاسبه an طرفین رابطه (8) را در cosx ضرب نموده و سپس انتگرال گیری نمائیم.

 

+

 

1-3-1- بسط تابع با دوره تناوب 2v

 

ضرائب a0، an و bn =؟

برای محاسبه a0 از طرفین T- تا T انتگرال می گوییم

 

 

برای تعیین ضرائب جملات کسینوسی طرفین را در Cosmx ضرب می کنیم و از –T تا T

انتگرال می گیریم.

 

 

 

تمامی جملات به جز جمله در حالتی که n,m باشد برابر صفرند و در حالت n,m مستقر برابر 2n است

 


دانلود با لینک مستقیم


تحقیق درباره ریاضیات مهندسی

تحقیق درباره تاریخچه ی ریاضیات

اختصاصی از اینو دیدی تحقیق درباره تاریخچه ی ریاضیات دانلود با لینک مستقیم و پر سرعت .

تحقیق درباره تاریخچه ی ریاضیات


تحقیق درباره تاریخچه ی ریاضیات

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 35

 

تاریخچه ی ریاضیات

انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجه‌هایش را می‌داند انجام می‌داد. اما بزودی مجبور شد وسیلة شمارش دقیقتری بوجود آورد. لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده می‌باشد قدیمی‌ترین دستگاه شماری است که آثاری از آن در کهن‌ترین مدارک موجود یعنی نوشته‌های سومری مشاهده می‌شود.

سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بین‌النهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند.

در این موقع مصریها نیز در سواحل سفلای رود نیل تمدنی درخشان پدید آورده بودند. طغیان رود نیل هر سال حدود و ثغور زمینهای زراعتی این قوم را محو می‌کرد. احتیاج به تقسیم مجدد این اراضی موجب رهبری آنها به اولین احکام سادة هندسی گردید. همچنین مبادلات تجارتی و تعیین مقدار باج و خراج سالیانه آنها را وادار به توسعه علم حساب نمود این اطلاعات همگی از روی پاپیروسها و الواحی است که در نتیجه حفاریها بدست آمده و به خط هیروگلیفی می‌باشد. قدیمی‌ترین آنها که مربوط به 1800 سال قبل از میلاد است شامل چند رساله دربارة علم حساب و مسائل حساب مقدماتی می‌باشد، از آن جمله رسالة پاپیروس آهس است که درسال 1868 توسط ایسنلر مصرشناس مشهور ترجمه شد. سایر تمدنهای شرقی نظیر چینی و هندی در ترویج دانش نقش مؤثری نداشته‌اند و جز برخی نتایج پراکنده که در زیر فشار مفاهیم ماوراءالطبیعه خرد شده است چیزی از آنان در دست نیست.

قریب هزار سال پس از نابودی فرهنگ قدیم مصر و محو تمدن آَشور، یونانیان از روی مقدمات پراکنده و بی‌شکل آنها علمی پدید آوردند که در واقع به عالیترین وجه مرتب و منظم گردیده و عقل و منطق را کاملاً اقناع می‌نمود.

نخستین دانشمند معروف یونانی طالس ملطلی (639_548ق.م) است که در پیدایش علوم نقش مهمی بعهده داشته و می‌توان ویرا موجد علوم فیزیک ، نجوم و هندسه «تشابه» به او کاملاً بی‌اساس است.

در اوایل قرن ششم ق.م. فیثاغورث (572_500 قبل از میلاد) از اهالی ساموس یونان کم‌کم ریاضیات را بر پایه و اساسی قرار داد و به ایجاد مکتب فلسفی خویش همت گماشت. فیثاغورثیان عدد را بخاطر هم‌آهنگی و نظمی که دارد اساس ومبدأ همه چیز می‌پنداشتند و بر این عقیده بودند که تمام مفاهیم را به کمک آن می‌توان بیان نمود.

پس از فیثاغورث باید از زنون فیلسوف و ریاضیدان یونانی که در 490ق.م در ایلیا متولد شده است نام ببریم.

در اوایل نیمه دوم قرن پنجم بقراط از اهالی کیوس فضاهایی متفرق آن زمان را گردآوری کرد و در حقیقت همین قضایا است که مبانی هندسة جدید ما را تشکیل می‌دهند.

در قرن چهارم قبل از میلاد افلاطون در باغ آکادموس در آتن مکتبی ایجاد کرد که نه قرن بعداز او نیز همچنان برپا ماند. وی ریاضیات مخصوصاً هندسه را بسیار عزیز می‌داشت، تا جائی که بر سردر مکتب خود این جمله را حک کرده بود: «هرکس هندسه نمی‌داند به اینجا قدم نگذارد». این فیلسوف بزرگ به تکمیل منطق که رکن اساسی ریاضیات است همت گماشت و چندی بعد منجم و ریاضیدان معاصر وی ادوکس با ایجاد تئوری نسبت‌ها نشان داد که کمیات اندازه نگرفتنی که تا آن زمان در مسیر علوم ریاضی گودالی حفر کرده بود هیچ چیز غیر عادی ندارد و می‌توان مانند سایر اعداد قواعد حساب را در مورد آنها بکار برد.

در این احوال اسکندر کشورها را یکی پس از دیگری فتح می‌کرد و هرجا را که بر روی آن انگشت می‌نهاد مرکزی از برای پیشرفت تمدن یونانی می‌شد.

پس از مرگ این فاتح مقتدر در 323ق.م و تقسیم امپراطوری عظیم او، مصر بدست بطلیموس افتاد و امپراطوری بطالسه را تشکیل داد. بطالسه که اسکندریه را به پایتختی برگزیده بودند تمام دانشمندان را بدانجا پذیرفتند و همین دانشمندان در صدد ایجادکتابخانة بزرگی در این شهر ساحلی برآمدند و به توسعه و تکمیل آن همت گماشتند.

اکنون به زمانی رسیده‌ایم که بایستی آنرا عصر طلائی ریاضیات یونان نامید. اهمیت فوق‌العاده این دوره به سبب ظهور سه عالم بزرگ ریاضی یعنی اقلیدس ، ارشمیدس و آپولونیوس است که هم در دوران خود و هم برای قرون بعد از خویش شهرتی عالمگیر کسب نمودند.

در قرن دوم ق.م نام تنها ریاضیدانی که بیش از همه تجلی داشت ابرخس یا هیپارک بود. این ریاضیدان و منجم بزرگ که بین سالهای 161تا 126ق.م در رودس متولد شد گامهای بلند و استادانه‌ای در علم نجوم برداشت و مثلثات را نیز اختراع کرد.

هیپارک نخستین کسی بود که تقسیم‌بندی معمولی بابلی‌ها را برای پیرامون دایره پذیرفت. به این معنی که دایره را به 360 درجه و درجه را به 60 دقیقه و دقیقه را نیز به 60 قسمت برابر تقسیم نمود و جدولی تابع شعاع دایره بدست آورد که وترهای بعضی از قوسها را می‌داد و این قدیمی‌ترین جدول مثلثاتی است که تاکنون شناخته شده است.

در سال 47ق.م که ژول سزار نیروی دریایی مصررا آتش زد، در کتابخانه بزرگ اسکندریه نیز حریقی ایجاد شد که قسمت اعظم آنرا نابود ساخت. بالاخره در سال 30ق.م به هنگام امپراطوری ملکه کلئوپاترا کشور مصریکی از ایالات امپراطوری روم شد.

در این دوره کوتاه از کشفیات جدید خبری نبود و دانشمندان متوسطی نظیر بطلیموس، منلائوس و باپوس نیز که ظهور کردند تنها به تعلیم و انتشار آثار قدما اکتفا نمودند.

بطلیموس که به احتمال قوی با امپراطوران بطالسه هیچگونه ارتباطی ندارددر تعقیب افکار هیپارک کوشش بسیار کرد.

کتاب مشهور او به نام اصلی«ترکیب ریاضی» شامل یک دستگاه هیأت بیان حرکت دورانی اجسام سماوی و یکدورة کامل مثلثاتکروی و مستقیم‌الخط و توضیح و محاسبة نمودهای حرکت بومی است. این کتاب را درسال 827 از یونانی به عربی ترجمه کردند ونام آنرا مجسطی یعنی «بسیار بزرگ» نهادند و از آن پس به همین نام باقی ماند.

منلائوس که در اواخر قرن اول میلادی در اسکندریه می‌زیست به امر امپراطور دومی سین کتابی تألیف کرد که قضیه معروف منلائوس دربارة چهارضلعی محاطی در آن ذکر شده است.

پاپوس که دورة زندگانیش در حدود 350 میلادی بوده است دارای کتابی است به نام «مجموعة ریاضیات». هدف وی از تدوین این کتاب آن بوده است که به اختصار نتایجی را که از بدو پیدایش علم هندسه تا آن زمان حاصل شده بود برای خود بیان نماید. با این حال در موارد بسیار احکام جدید و جالبی که از اکتشافات خودش می‌بود و بر آن افزود. مسألة معروف پاپوس که در همه کتابهای هندسة ما وجود دارد و قضیه بسیار مهم تعیین مرکز نقل سطوح و احجام که برخلاف واقع آنرا به گولدن نسبت داده‌اند.

در این احوال هندوستان به منزلة یک مرکز جدید روشنفکری توسعه می‌یافت و چنین به نظر می‌رسید که علم بدانجا فرار کرده و یا به عبارت بهتر فقط آنجا را مقام خود ساخته است. زیرا سابق براین در زمان یونانی‌ها نیز در آنجا وجود داشته است. علوم هندی بیش از علوم تمام ممالک دیگر که تاکنون از ایشان سخن گفتیم در خدمت مذهب بود


دانلود با لینک مستقیم


تحقیق درباره تاریخچه ی ریاضیات

پاور پوینت کتاب ریاضیات و کاربرد آن در مدیریت

اختصاصی از اینو دیدی پاور پوینت کتاب ریاضیات و کاربرد آن در مدیریت دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

دسته بندی : پاورپوینت

نوع فایل :  .ppt ( قابل ویرایش و آماده پرینت )

تعداد اسلاید : 291 اسلاید


 قسمتی از متن .ppt : 

 

کتابریاضیات و کاربرد آن در مدیریت

رشته های حسابداری و مدیریت

مؤلف: لیدا فرخی

تهیه ی پاور پوینت: اردوان میرزایی

تعداد واحد : 3

اهداف درس

توانایی حل مسئله

تقویت تفکر ریاضی

آشنایی با: بردارها

ماتریس و دترمینان

دستگاه معادلات خطی و توابع خطی

توابع چند متغیره و معادلات دیفرانسیل

انتگرال

فهرست مطالب

فصل اول: بردارها

فصل دوم:ماتریس و دترمینان

فصل سوم: دستگاه معادلات خطی و توابع خطی

فصل چهارم: توابع چند متغیره

فصل پنجم:معادلات دیفرانسیل

فصل ششم: انتگرال


دانلود با لینک مستقیم


پاور پوینت کتاب ریاضیات و کاربرد آن در مدیریت

مقاله درباره تاریخچه ریاضیات و قسمتهای مختلف آن 52 ص

اختصاصی از اینو دیدی مقاله درباره تاریخچه ریاضیات و قسمتهای مختلف آن 52 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 64

 

سرگذشت ریاضی

انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجه‌هایش را می‌داند انجام می‌داد. اما بزودی مجبور شد وسیلة شمارش دقیقتری بوجود آورد. لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده می‌باشد قدیمی‌ترین دستگاه شماری است که آثاری از آن در کهن‌ترین مدارک موجود یعنی نوشته‌های سومری مشاهده می‌شود.

 سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بین‌النهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند.

 در این موقع مصریها نیز در سواحل سفلای رود نیل تمدنی درخشان پدید آورده بودند. طغیان رود نیل هر سال حدود و ثغور زمینهای زراعتی این قوم را محو می‌کرد. احتیاج به تقسیم مجدد این اراضی موجب رهبری آنها به اولین احکام سادة هندسی گردید. همچنین مبادلات تجارتی و تعیین مقدار باج و خراج سالیانه آنها را وادار به توسعه علم حساب نمود این اطلاعات همگی از روی پاپیروسها و الواحی است که در نتیجه حفاریها بدست آمده و به خط هیروگلیفی می‌باشد. قدیمی‌ترین آنها که مربوط به 1800 سال قبل از میلاد است شامل چند رساله دربارة علم حساب و مسائل حساب مقدماتی می‌باشد، از آن جمله رسالة پاپیروس آهس است که درسال 1868 توسط ایسنلر مصرشناس مشهور ترجمه شد. سایر تمدنهای شرقی نظیر چینی و هندی در ترویج دانش نقش مؤثری نداشته‌اند و جز برخی نتایج پراکنده که در زیر فشار مفاهیم ماوراءالطبیعه خرد شده است چیزی از آنان در دست نیست.

 قریب هزار سال پس از نابودی فرهنگ قدیم مصر و محو تمدن آَشور، یونانیان از روی مقدمات پراکنده و بی‌شکل آنها علمی پدید آوردند که در واقع به عالیترین وجه مرتب و منظم گردیده و عقل و منطق را کاملاً اقناع می‌نمود. نخستین دانشمند معروف یونانی طالس ملطلی (639_548ق.م) است که در پیدایش علوم نقش مهمی بعهده داشته و می‌توان ویرا موجد علوم فیزیک ، نجوم و هندسه «تشابه» به او کاملاً بی‌اساس است.در اوایل قرن ششم ق.م. فیثاغورث (572_500 قبل از میلاد) از اهالی ساموس یونان کم‌کم ریاضیات را بر پایه و اساسی قرار داد و به ایجاد مکتب فلسفی خویش همت گماشت. فیثاغورثیان عدد را بخاطر هم‌آهنگی و نظمی که دارد اساس ومبدأ همه چیز می‌پنداشتند و بر این عقیده بودند که تمام مفاهیم را به کمک آن می‌توان بیان نمود.

 پس از فیثاغورث باید از زنون فیلسوف و ریاضیدان یونانی که در 490ق.م در ایلیا متولد شده است نام ببریم. در اوایل نیمه دوم قرن پنجم بقراط از اهالی کیوس فضاهایی متفرق آن زمان را گردآوری کرد و در حقیقت همین قضایا است که مبانی هندسة جدید ما را تشکیل می‌دهند.

 در قرن چهارم قبل از میلاد افلاطون در باغ آکادموس در آتن مکتبی ایجاد کرد که نه قرن بعداز او نیز همچنان برپا ماند. وی ریاضیات مخصوصاً هندسه را بسیار عزیز می‌داشت، تا جائی که بر سردر مکتب خود این جمله را حک کرده بود: «هرکس هندسه نمی‌داند به اینجا قدم نگذارد». این فیلسوف بزرگ به تکمیل منطق که رکن اساسی ریاضیات است همت گماشت و چندی بعد منجم و ریاضیدان معاصر وی ادوکس با ایجاد تئوری نسبت‌ها نشان داد که کمیات اندازه نگرفتنی که تا آن زمان در مسیر علوم ریاضی گودالی حفر کرده بود هیچ چیز غیر عادی ندارد و می‌توان مانند سایر اعداد قواعد حساب را در مورد آنها بکار برد.

 در این احوال اسکندر کشورها را یکی پس از دیگری فتح می‌کرد و هرجا را که بر روی آن انگشت می‌نهاد مرکزی از برای پیشرفت تمدن یونانی می‌شد. پس از مرگ این فاتح مقتدر در 323ق.م و تقسیم امپراطوری عظیم او، مصر بدست بطلیموس افتاد و امپراطوری بطالسه را تشکیل داد. بطالسه که اسکندریه را به پایتختی برگزیده بودند تمام دانشمندان را بدانجا پذیرفتند و همین دانشمندان در صدد ایجادکتابخانة بزرگی در این شهر ساحلی برآمدند و به توسعه و تکمیل آن همت گماشتند. اکنون به زمانی رسیده‌ایم که بایستی آنرا عصر طلائی ریاضیات یونان نامید. اهمیت فوق‌العاده این دوره به سبب ظهور سه عالم بزرگ ریاضی یعنی اقلیدس ، ارشمیدس و آپولونیوس است که هم در دوران خود و هم برای قرون بعد از خویش شهرتی عالمگیر کسب نمودند.

 در قرن دوم ق.م نام تنها ریاضیدانی که بیش از همه تجلی داشت ابرخس یا هیپارک بود. این ریاضیدان و منجم بزرگ که بین سالهای 161تا 126ق.م در رودس متولد شد گامهای بلند و استادانه‌ای در علم نجوم برداشت و مثلثات را نیز اختراع کرد.هیپارک نخستین کسی بود که تقسیم‌بندی معمولی بابلی‌ها را برای پیرامون دایره پذیرفت. به این معنی که دایره را به 360 درجه و درجه را به 60 دقیقه و دقیقه را نیز به 60 قسمت برابر تقسیم نمود و جدولی تابع شعاع دایره بدست آورد که وترهای بعضی از قوسها را می‌داد و این قدیمی‌ترین جدول مثلثاتی است که تاکنون شناخته شده است.

 در سال 47ق.م که ژول سزار نیروی دریایی مصررا آتش زد، در کتابخانه بزرگ اسکندریه نیز حریقی ایجاد شد که قسمت اعظم آنرا نابود ساخت. بالاخره در سال 30ق.م به هنگام امپراطوری ملکه کلئوپاترا کشور مصریکی از ایالات امپراطوری روم شد. در این دوره کوتاه از کشفیات جدید خبری نبود و دانشمندان متوسطی نظیر بطلیموس، منلائوس و باپوس نیز که ظهور کردند تنها به تعلیم و انتشار آثار قدما اکتفا نمودند. بطلیموس که به احتمال قوی با امپراطوران بطالسه هیچگونه ارتباطی ندارددر تعقیب افکار هیپارک کوشش بسیار کرد.

 کتاب مشهور او به نام اصلی«ترکیب ریاضی» شامل یک دستگاه هیأت بیان حرکت دورانی اجسام سماوی و یکدورة کامل مثلثاتکروی و مستقیم‌الخط و توضیح و محاسبة نمودهای حرکت بومی است. این کتاب را درسال 827 از یونانی به عربی ترجمه کردند ونام آنرا مجسطی یعنی «بسیار بزرگ» نهادند و از آن پس به همین نام باقی ماند.


دانلود با لینک مستقیم


مقاله درباره تاریخچه ریاضیات و قسمتهای مختلف آن 52 ص

تحقیق درباره تاریخچه مختصر ریاضیات

اختصاصی از اینو دیدی تحقیق درباره تاریخچه مختصر ریاضیات دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 45

 

تاریخچه مختصر ریاضیات

انسان اولیه نسبت به اعداد بیگانه بود وشمارش اشیاء  اطراف خود را به حسب غریزه یعنی همان طور که مرغ خانگی تعداد جوجه هایش را میداند انجام میداد اما به زودی مجبور شد وسیله ی شمارش دقیق تری به وجود اورد لذا به کمک انگشتان دست دستگاه شمارش جدیدیپدید اورد که مبنای ان شصت بود .این دستگاه شمار که بسیار پیچیده میباشدقدیمی ترین دستگاه شماری است که اثاری از ان در کهن ترین مدارک موجود یعنی نوشته های سومری مشاهده میشود.سومری ها که تمدنشان مربوط به هزار سال قبل از میلاد مسیح در جنوب بین النهرین یعنی ناحیه بین دو رود دجله وفرات ساکن بودند .ان ها در حدود ۲۵۰۰ سال قبل از میلاد با امپراتوری سامی اکاد متحد شدند وتمدن آشوری را پدید اوردند درز این موقع مصری ها نیز در سواحل سفلای رود نیل تمدن درخشانی پدید اوردنده بودند.طغیان رود نیل هر ساله حدود زمینهای زراعتی این قوم را محو میکرد احتیاج به تقسیم مجدد این اراضی رهبری انها به اولین احکام ساده هندسی گردیدهمچنین مبادلات تجاری وتعیین مقدار باج وخراج سالیانه ان ها را وادار به توسعه علم حساب نمود این اطلاعات همگی از روی پاپیروسها والواحی است که در نتیجه حفاریهای به دست امده وبه خط هیرو گلیفی می باشند به دست آمده.قدیمی ترین انها که مربوط به ۱۸۰۰ سال قبل از میلاد است شامل چند رساله درباره ی علم حساب ومسایل حساب مقدماتی میباشد از آن جمله رساله پاپیروس آهمس  است که در سال ۱۸۶۸ توسط ایسنلر مصر شناس مشهور ترجمه شد .سلیر تمدنهای شرقی نظیر چینی وهندی نقش موثری نداشتند جز برخی نتایج پراکنده که در زیر فشار مفاهیم ماورا الطبیه خرد شده است.

قریب هزار سال پس از نابودی فرهنگ قدیم مصر ومحو تمدن عاشور یونانیان از روی مقدمات پراکنده وبی شکل آنها علمی پدید اوردند که در واقع به عالی ترین وجه مرتب ومنظم گردیده وعقل ومنطق را کاملا اقناع نمودند نخستین دانشمند یونانی طالس ملطسی(۶۳۹-۵۴۸) قبل از میلاد است که در پیدایش علوم نقش مهمی به عهده داشت ومیتوان وی را موجد علوم فیزیک نجوم وهندسه دانست.لیکن انتساب تئوری بسیار مهم هندسی تشابه به او کاملا بی اساس است.در اوایل قرن ششم قبل از میلاد فیثاغورس   از اهالی ساموس یونان کم کم ریاضیات را بر پایه واساس محکم قرار داد وبه ایجاد مکتب فلسفی خویش همت گماشت .فیثاغورسیان عدد را به خاطر هم آهنگی ونظمی که دارد اساس ومبدا همه چیز میپنداشتند وبراین عقیده بودند که تمام مفاهیم را به کمک آن میتوان بیان نمود.

پس از فیثاغورس باید از زنون فیلسوف وریاضیدان یونانی که ۴۹۰ قبل از میلاد در ایلیا متولد شده است نام برده شود در اوایل نیمه دوم قرن پنجم بقراط از اهالی کیوس قضایای متفرق آن زمان را گرد اوری کرد ودر حقیقت همین قضایا است که مبانی هندسه ی جدید ما را تشکیل می دهد.

در قرن چهارم قبل از میلاد افلاطون در باغ اکادموس(آکادمی از همین نام گرفته شده )در آتن مکتبی ایجاد کرد که ۹ قرن بعد از او نیز هم چنان بر پا ماند .وی ریاضیات مخصوصا هندسه را بسیار عزیز می داشت  تا جایی که بر سر در مکتب خود این جمله را حک کرده بود(هر کسی هندسه نمی  داند وارد نشود)  این فیلسوف بزرگ به تکمیل منطق که رکن اساسی ریاضیات است همت گماشت.

انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجه‌هایش را می‌داند انجام می‌داد. اما بزودی مجبور شد وسیلة شمارش دقیقتری بوجود آورد. لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده می‌باشد قدیمی‌ترین دستگاه شماری است که آثاری از آن در کهن‌ترین مدارک موجود یعنی نوشته‌های سومری مشاهده می‌شود.سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بین‌النهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند. در این موقع مصریها نیز در سواحل سفلای رود نیل تمدنی درخشان پدید آورده بودند. طغیان رود نیل هر سال حدود و ثغور زمینهای زراعتی این قوم را محو می‌کرد. احتیاج به تقسیم مجدد این اراضی موجب رهبری آنها به اولین احکام سادة هندسی گردید. همچنین مبادلات تجارتی و تعیین مقدار باج و خراج سالیانه آنها را وادار به توسعه علم حساب نمود این اطلاعات همگی از روی پاپیروسها و الواحی است که در نتیجه حفاریها بدست آمده و به خط هیروگلیفی می‌باشد. قدیمی‌ترین آنها که مربوط به 1800 سال قبل از میلاد است شامل چند رساله دربارة علم حساب و مسائل حساب مقدماتی می‌باشد، از آن جمله رسالة پاپیروس آهس است که درسال 1868 توسط ایسنلر مصرشناس مشهور ترجمه شد. سایر تمدنهای شرقی نظیر چینی و هندی در ترویج دانش نقش مؤثری نداشته‌اند و جز برخی نتایج پراکنده که در زیر فشار مفاهیم ماوراءالطبیعه خرد شده است چیزی از آنان در دست نیست. قریب هزار سال پس از نابودی فرهنگ قدیم مصر و محو تمدن آَشور، یونانیان از روی مقدمات پراکنده و بی‌شکل آنها علمی پدید آوردند که در واقع به عالیترین وجه مرتب و منظم گردیده و عقل و منطق را کاملاً اقناع می‌نمود. نخستین دانشمند معروف یونانی طالس ملطلی (639_548ق.م) است که در پیدایش علوم نقش مهمی بعهده داشته و می‌توان ویرا موجد علوم فیزیک ، نجوم و هندسه «تشابه» به او کاملاً بی‌اساس است.در اوایل قرن ششم ق.م. فیثاغورث (572_500 قبل از میلاد) از اهالی ساموس یونان کم‌کم ریاضیات را بر پایه و اساسی قرار داد و به ایجاد مکتب فلسفی خویش همت گماشت. فیثاغورثیان عدد را بخاطر هم‌آهنگی و نظمی که دارد اساس ومبدأ همه چیز می‌پنداشتند و بر این عقیده بودند که تمام مفاهیم را به کمک آن می‌توان بیان نمود. پس از فیثاغورث باید از زنون فیلسوف و ریاضیدان یونانی که در 490ق.م در ایلیا متولد شده است نام ببریم. در اوایل نیمه دوم قرن پنجم بقراط از اهالی کیوس فضاهایی متفرق آن زمان را گردآوری کرد و در حقیقت همین قضایا است که مبانی هندسة جدید ما را تشکیل می‌دهند. در قرن چهارم قبل از میلاد افلاطون در باغ آکادموس در آتن مکتبی ایجاد کرد که نه قرن بعداز او نیز همچنان برپا ماند. وی ریاضیات مخصوصاً هندسه را بسیار عزیز می‌داشت، تا جائی که بر سردر مکتب خود این جمله را حک کرده بود: «هرکس هندسه نمی‌داند به اینجا قدم نگذارد». این فیلسوف بزرگ به تکمیل منطق که رکن اساسی ریاضیات است همت گماشت و چندی بعد منجم و ریاضیدان معاصر وی ادوکس با ایجاد تئوری نسبت‌ها نشان داد که کمیات اندازه نگرفتنی که تا آن زمان در مسیر علوم ریاضی گودالی حفر کرده بود هیچ چیز غیر عادی ندارد و می‌توان مانند سایر اعداد قواعد حساب را در مورد آنها بکار برد. در این احوال اسکندر کشورها را یکی پس از دیگری فتح می‌کرد و هرجا را که بر روی آن انگشت می‌نهاد مرکزی از برای پیشرفت تمدن یونانی می‌شد. پس از مرگ این فاتح مقتدر در 323ق.م و تقسیم امپراطوری عظیم او، مصر بدست بطلیموس افتاد و امپراطوری بطالسه را تشکیل داد. بطالسه که اسکندریه را به پایتختی برگزیده بودند تمام دانشمندان را بدانجا پذیرفتند و همین دانشمندان در صدد ایجادکتابخانة بزرگی در این شهر ساحلی برآمدند و به توسعه و تکمیل آن همت گماشتند. اکنون به زمانی رسیده‌ایم که بایستی آنرا عصر طلائی ریاضیات یونان نامید. اهمیت فوق‌العاده این دوره به سبب ظهور سه عالم بزرگ ریاضی یعنی اقلیدس ، ارشمیدس و آپولونیوس است که هم در دوران خود و هم برای قرون بعد از خویش شهرتی عالمگیر کسب نمودند. در قرن دوم ق.م نام تنها ریاضیدانی که بیش از همه تجلی داشت ابرخس یا هیپارک بود. این ریاضیدان و منجم بزرگ که بین سالهای 161تا 126ق.م در رودس متولد شد گامهای بلند و استادانه‌ای در علم نجوم برداشت و مثلثات را نیز اختراع کرد.هیپارک نخستین کسی بود که تقسیم‌بندی معمولی بابلی‌ها را برای پیرامون دایره پذیرفت. به این معنی که دایره را به 360 درجه و درجه را به 60 دقیقه و دقیقه را نیز به 60 قسمت برابر تقسیم نمود و جدولی تابع شعاع دایره بدست آورد که وترهای بعضی از قوسها را می‌داد و این قدیمی‌ترین جدول مثلثاتی است که تاکنون شناخته شده است.در سال 47ق.م که ژول سزار نیروی دریایی مصررا آتش زد، در کتابخانه بزرگ اسکندریه نیز حریقی ایجاد شد که قسمت اعظم آنرا نابود ساخت. بالاخره در سال 30ق.م به هنگام امپراطوری ملکه کلئوپاترا کشور مصریکی از ایالات امپراطوری روم شد. در این دوره کوتاه از کشفیات جدید خبری نبود و دانشمندان متوسطی نظیر بطلیموس، منلائوس و باپوس نیز که ظهور کردند تنها به تعلیم و انتشار آثار قدما اکتفا نمودند. بطلیموس که به احتمال قوی با امپراطوران بطالسه هیچگونه ارتباطی ندارددر تعقیب افکار هیپارک کوشش بسیار کرد.کتاب مشهور او به نام اصلی«ترکیب ریاضی» شامل یک دستگاه هیأت بیان حرکت دورانی اجسام سماوی و یکدورة کامل مثلثاتکروی و مستقیم‌الخط و توضیح و محاسبة نمودهای حرکت بومی است. این کتاب را درسال 827 از یونانی به عربی ترجمه کردند ونام آنرا مجسطی یعنی «بسیار بزرگ» نهادند و از آن پس به همین نام باقی ماند. منلائوس که در اواخر قرن اول میلادی در اسکندریه می‌زیست به امر امپراطور دومی سین کتابی تألیف کرد که قضیه معروف منلائوس دربارة چهارضلعی محاطی در آن ذکر شده است. پاپوس که دورة زندگانیش در حدود 350 میلادی بوده است دارای کتابی است به نام «مجموعة ریاضیات». هدف وی از تدوین این کتاب آن بوده است که به اختصار نتایجی را که از بدو پیدایش علم هندسه تا آن زمان حاصل شده بود برای خود بیان نماید. با این حال در موارد بسیار احکام جدید و جالبی که از اکتشافات خودش می‌بود و بر آن افزود. مسألة معروف پاپوس که در همه کتابهای هندسة ما وجود دارد و قضیه بسیار مهم تعیین مرکز نقل سطوح و احجام که برخلاف واقع آنرا به گولدن نسبت داده‌اند. در این احوال هندوستان به منزلة یک مرکز جدید روشنفکری توسعه می‌یافت و چنین به نظر می‌رسید که علم بدانجا فرار کرده و یا به عبارت بهتر فقط آنجا را مقام خود ساخته است. زیرا سابق براین در زمان یونانی‌ها نیز در آنجا وجود داشته است. علوم هندی بیش از علوم تمام ممالک دیگر که تاکنون از ایشان سخن گفتیم در خدمت مذهب بود وشامل بعضی مقدمات علم طب یعنی همانقدر که برای ساختن مشروبات مقدس کفایت می‌کردو مختصری از علوم نجومیعنی درست همان اندازه که برای تشکیل تقاویم مذهبی مورد نیاز است و اندکی هندسه، مرکب از بعضی طرق عملی که برای ساختن مسجد و محراب لازم است بیش نبود. در نخستین قرون تاریخ چهار ریاضی‌دان مشهور در این کشور وجود داشت که عبارت بودند از:آپاستامبا(قرن پنجم)، آریاب هاتا (قرن ششم)، براهماگوپتا (قرن هفتم) و بهاسکارا (قرن نهم) که در کتب ایشان بخصوص قواعد تناسب ساده و ربح مرکب مشاهده می‌شود. محاسبات در این کتابها جنبه شاعرانه داشت و حتی نام علم حسابرا «لیلاواتی» گذارده بودندکه معنی دلبری و افسونگری دارد! با شروع قرن دهم پیشرفت کشفیات ریاضی در هندوستاننیز متوقف گردید و مشعل فروزان علم بدست اعراب افتاد. در سال 622م که حضرت محمدصلی الله علیه و آله وسلماز مکه هجرت فرمود در واقع آغاز شگفتی تمدن اسلام بود. اعراب که جنبش شدید خود را از سدة هفتم آغاز کرده بودند پس از رحلت پیغمبر اسلام در 632 به توسعه سرزمینهای خود پرداختند و بزودی تمام ممالک آفریقائی ساحل مدیترانه را متصرف شدند و این توسعه‌طلبی ایشان را در اروپاتا اسپانیاو در آسیاتا هندوستانکشانید و در نتیجه تماس با کشورهای مغلوب که مردم آنها غالباً دارای تمدن عالی بودند ذوق شدیدی به آموختن در ایشان بوجود آمد. لذا با سهولت و چالاکی فرهنگ ممالک دست نشانده را پذیرفتند. در زمان مامون خلیفه عباسی تمدن اسلام بحد اعتلای خود رسید بطوری که از اواسط قرن هشتم تا اواخر قرن یازدهم زبان عربی علمی بین‌المللی گردید. از ریاضی‌دانان بزرگ اسلامی یکی خوارزمیمی‌باشد که در سال 820 به هنگام خلافت مأمون در بغدادکتاب مشهورالجبر و المقابله را نگاشت. وی در این کتاب بدون آنکه از حروف و علامات استفاده کند، حل معادلة درجه اولرا بدو طریقی که ما امروزه جمع جبری جمل و نقل آنها از یکطرف بطرف دیگر می‌نامیم، انجام داده است. دیگر ابوالوفا (998_ 938) است که جداول مثلثاتی ذیقیمتی پدید آورده و بالاخره محمدبن هیثم(1039_ 965) معروف به الحسن را باید نام بردکه صاحب تألیفات بسیاری در ریاضیات و نجوماست. قرون وسطی از قرن پنجم تا قرن دوازدهم یکی از دردناکترین ادوار تاریخی اروپاست. عامة مردم در منتهای فلاکت و بدبختی بسر می‌بردند. جنگهای متوالی و قتل و غارت و از طرف دیگر نفوذ کلیسا آنچنان فکر مردم را به خود مشغول داشته بود که هیچ کس فرصت آنرا نمی‌یافت که در فکر علم باشد، آری مدت هفت قرن تمام اروپا محکوم به این بود که بار گران جهل و نادانی را بر دوش کشد. در اواخر قرن دهم ژربر فرانسوی کوشید تا به کمک مطالبی که در چند مدرسه از کلیساهای بزرگ اروپا آموخته بود پیشرفت جدیدی به علوم مقدماتی بدهد. وی دستگاه مخصوص را که برای محاسبه بکار می‌رفت اصلاح کرد. این دستگاه همان چرتکه بود. برجسته‌ترین نامهائی که در این دوره ملاحظه می‌نمائیم، در مرحله اول لئوناردیوناکسی (1220_1170) ریاضی‌دان ایتالیائی است. وی که مدتهادر مشرق زمین اقامت کرده بود، آثار برخی از دانشمندان اسلامی را از آنجا به ارمغان آورد. همچنین برای اولین بار علم جبررا در هندسهمورد استفاده قرار داد. دیگر نیکلاارسم فرانسوی می‌باشد که باید او را پیشقدم هندسه تحلیلیدانست. وی اولین کسی است که نه تنها مجذور و مکعب و توانهای چهارم و پنجم اعدادرا در نظر گرفت بلکه اعدادرا بقوای کسری از قبیل یک دوم و دو سوم و یک هفتم و غیره نیز رسانید و به عبارت دیگر وانهای کسری اعدادرا بدست آورد. در قرن پانزدهم ترقی فنی، پیشرفت علوم نظری را تحت‌الشعاع خود را قرار داد. اختراع چاپ در سال 1440 بوسیله گوتنبرگ سبب آن شد که تعداد کتاب در جهان با سرعتی صاعقه‌آسا رو به افزایش نهد و زمینه برای مطالعة منابع علمی گذشته که کم و بیش فراموش شده بود مهیا گردد. در قرون پانزدهم و شانزدهم دانشمندان ایتالیائی و شاگردان آلمانی آنها در حساب عددی جبر و مکانیک ترقیات شایان نمودند. تارتاگلیا و کاردان در ایتالیا سنن ریاضی‌دانان عهد عتیق را از سر گرفتند. رژیمن تانسوس آلمانی که از جمله بزرگترین منجمان این دوره است کتاب قدیمی‌ترین کتاب جالبی دربارة مثلثات نگاشت. این کتاب قدیمی‌ترین کتاب کامل مثلثات است که در مغرب‌زمین انتشار یافت. همچنین ژان‌ورتر از اهالی نورنبرگ آلمان که به هندسه قدما به خوبی مسلط بود راه‌حل عالمانه و بدیعی از یکی از مسائل ارشمیدس که موضوع آن تقسیم کره به کمک صفحه به نسبت معلومی بود بدست داد. وی در تمام قسمتهای ریاضی بخصوص مثلثات تألیفات بسیار دارد. ریاضی‌دانان فرانسوی در اوایل قرن شانزدهم عموماً مادون ایتالیائی‌ها بودند. مشهورترین آنها یکی اورنس فین است که در هندسه بویژه در موردتربیع دایره اکتشافات تازه‌ای کرد. دیگر پی‌یرلارامه موسوم به راموس است که بیشتر از لحاظ آثار فلسفی خود شهرت یافت. با وجود این به ریاضیات نیز علاقه فراوان نشان داد تا جائی که کتابی در ستایش ریاضیات


دانلود با لینک مستقیم


تحقیق درباره تاریخچه مختصر ریاضیات