اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درباره ی حد و پیوستگی 9 ص

اختصاصی از اینو دیدی تحقیق درباره ی حد و پیوستگی 9 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 9

 

حد و پیوستگی:

تعریف حد

مقدار ثابت a حد متغیر x است هرگاه به ازای هر عدد مثبت کوچک که قبلا به طور مشخص تعیین گردیده است بتوان مقداری از متغیر x را چنان تعیین کرد که جمیع مقادیر در نامساوی صدق کند. اگر a حد متغیر x باشد گوییم متغیر x به سوی حد a میل می‌کند و بر حسب قرداد آن را به یکی از صورتهای زیر می‌نویسیم:

تعبیر هندسی حد

مقدار ثابت a حد متغیر x است (یعنی L=a) هرگاه برای هر همسایگی کوچک که مرکز آن a و شعاع آن و است و این همسایگی قبلا بطور غیر مشخصی تعیین گردیده است مقداری از x را چنان تعیین نمود که جمیع نقاط متناظر به مقادیر بعدی متغیر در داخل این فاصله قرار گیرند.

خواص حد

مقدار ثابت c متغیری است که جمیع مقادیر آن بر یکدیگر منطبق است یعنی x=c. واضح است که حد مقدار ثابت c برابر c است زیرا همواره برای هر عدد مثبت و دلخواه نامساوی زیر برقرار است:

از تعریف حد نتیجه می‌گردد که متغیر نمی‌تواند دارای دو حد باشد زیرا اگر و باشد در این صورت متغیر x باید در یک زمان در دو نامساوی و صدق کند. ولی اگر باشد خواهیم دید که این امر امکان ندارد.

نباید تصور نمود که هر متغیر دارای حد می‌باشد.

حد یک تابع :

فرض می‌کنیم تابع در همسایگی معینی از نقطه a و یا در برخی نقاط این همسایگی معین باشد. اگر x به سوی a میل کند تابع به سوی حد b میل خواهد نمود، هرگاه به ازای هر عدد مثبت کوچک بتوان عدد مثبتی مانند غیر از a یافت به قسمی که جمیع مقادیر x که در نامساوی صدق می‌کنند در نامساوی نیز صدق کنند. اگر b حد تابع هنگامیکه باشد در اینصورت خواهیم نوشت:

قضایایی درباره حد

اگر m و b و a سه عدد دلخواه باشند و ، آنگاه

 

قضیه حد مجموع: حد مجموع دو تابع برابر مجموع حدهای آن دوتابع است، مشروط بر اینکه حدها وجود داشته باشند.

قضیه حد حاصلضرب: حد حاصلضرب دو تابع مساوی حاصلضرب حدهای آنهاست، مشروط بر اینکه حدها وجود داشته باشند.

قضیه حد تفاضل: حد تفاضل دو تابع مساوی تفاضل حدهای آن دو تابع است، مشروط بر اینکه حدها وجود داشته باشد.

حد حاصلضرب یک عدد ثابت در یک تابع ، برابر است با حاصلضرب آن عدد ثابت در حد آن تابع.

حد خارج قسمت دو تابع ، خارج قسمت حدهای آنهاست به شرطی که مخرج به صفر نگراید.

این ویژگیها برای حدهای راست و برای حدهای چپ نیز صادق است.

اگر و ، آنگاه:

 

اگر f و g به ازای جمیع مقادیر x در نامساوی صدق کنند. اگر f و g در x=a حد داشته باشند، آنگاه

 

قضیه حد تابع مرکب: اگر تابع g در دارای حد a و تابع f در a دارای حد A باشد. به علاوه ،


دانلود با لینک مستقیم


تحقیق درباره ی حد و پیوستگی 9 ص

تحقیق درمورد حد و پیوستگی 9 ص

اختصاصی از اینو دیدی تحقیق درمورد حد و پیوستگی 9 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 9

 

حد و پیوستگی:

تعریف حد

مقدار ثابت a حد متغیر x است هرگاه به ازای هر عدد مثبت کوچک که قبلا به طور مشخص تعیین گردیده است بتوان مقداری از متغیر x را چنان تعیین کرد که جمیع مقادیر در نامساوی صدق کند. اگر a حد متغیر x باشد گوییم متغیر x به سوی حد a میل می‌کند و بر حسب قرداد آن را به یکی از صورتهای زیر می‌نویسیم:

تعبیر هندسی حد

مقدار ثابت a حد متغیر x است (یعنی L=a) هرگاه برای هر همسایگی کوچک که مرکز آن a و شعاع آن و است و این همسایگی قبلا بطور غیر مشخصی تعیین گردیده است مقداری از x را چنان تعیین نمود که جمیع نقاط متناظر به مقادیر بعدی متغیر در داخل این فاصله قرار گیرند.

خواص حد

مقدار ثابت c متغیری است که جمیع مقادیر آن بر یکدیگر منطبق است یعنی x=c. واضح است که حد مقدار ثابت c برابر c است زیرا همواره برای هر عدد مثبت و دلخواه نامساوی زیر برقرار است:

از تعریف حد نتیجه می‌گردد که متغیر نمی‌تواند دارای دو حد باشد زیرا اگر و باشد در این صورت متغیر x باید در یک زمان در دو نامساوی و صدق کند. ولی اگر باشد خواهیم دید که این امر امکان ندارد.

نباید تصور نمود که هر متغیر دارای حد می‌باشد.

حد یک تابع :

فرض می‌کنیم تابع در همسایگی معینی از نقطه a و یا در برخی نقاط این همسایگی معین باشد. اگر x به سوی a میل کند تابع به سوی حد b میل خواهد نمود، هرگاه به ازای هر عدد مثبت کوچک بتوان عدد مثبتی مانند غیر از a یافت به قسمی که جمیع مقادیر x که در نامساوی صدق می‌کنند در نامساوی نیز صدق کنند. اگر b حد تابع هنگامیکه باشد در اینصورت خواهیم نوشت:

قضایایی درباره حد

اگر m و b و a سه عدد دلخواه باشند و ، آنگاه

 

قضیه حد مجموع: حد مجموع دو تابع برابر مجموع حدهای آن دوتابع است، مشروط بر اینکه حدها وجود داشته باشند.

قضیه حد حاصلضرب: حد حاصلضرب دو تابع مساوی حاصلضرب حدهای آنهاست، مشروط بر اینکه حدها وجود داشته باشند.

قضیه حد تفاضل: حد تفاضل دو تابع مساوی تفاضل حدهای آن دو تابع است، مشروط بر اینکه حدها وجود داشته باشد.


دانلود با لینک مستقیم


تحقیق درمورد حد و پیوستگی 9 ص