دانلود با لینک مستقیم و پر سرعت .
مقاله کامل بعد از پرداخت وجه
لینک پرداخت و دانلود در "پایین مطلب"
فرمت فایل: word (قابل ویرایش و آماده پرینت)
تعداد صفحات: 20
مقدمه
برای آن که امتداد جریانی را منحرف کنیم یا سرعت آن را تغییر دهیم ، باید نیرویی به آن وارد کنیم . هنگامی که یک پره متحرک امتداد جریانی را منحرف می کند و مومنتم آن را تغییر می دهد ، نیرویی از پره به سیال ـ یا بعکس از سیال به پره ـ وارد می شود . با حرکت پره و جابجا شدن نیرو ، کار انجام می شود . اساس کار توربوماشین ها بر مبنای همین اصل است . پمپها ، دمنده ها و کمپرسورها بر روی سیال کار انجام می دهند و بر انرژی آن می افزایند . توربین های آبی ، گازی و بخاری انرژی سیال را می گیرند و به انرژی مکانیکی روی محور گردنده تبدیل می کنند . کوپلینگ سیالی و مبدل گشتاور ، متشکل از یک پمپ و یک توربین هستند و برای انتقال ملایم قدرت مکانیکی به کار می روند .
تبدیل انرژی در توربوماشین ها پیوسته است . درطراحی توربوماشین ها هم از تئوری بهره می گیرند و هم از آزمایش .
با کاربرد تئوری تشابه می توان از طرح ماشینی که دارای ابعاد و سرعت دورانی مشخصی است و کارآمد بودن خود را در عمل نشان داده است استفاده کرده ، ماشین های مشابه دیگری با ابعاد و سرعت های متفاوت طراحی نمود .
در این گزارش ابتدا تشابه هندسی و تشابه کاری توربوماشین ها را تعریف کرده ، روابط تشابه را به دست می آوریم . سپس تئوری کسکیدها و به دنبال آن تئوری توربوماشین ها را ارائه می دهیم . آنگاه به ترتیب به بررسی توربین های عکس العملی ، پمپها و دمنده ها ، توربین های ضربه ای و کمپرسورهای سانتریفوژ می پردازیم . در انتها نیز پدیده کاویتاسیون را شرح خواهیم داد .
ماشینهای مشابه ، سرعت مخصوص
دو توربو ماشین را درنظر بگیرید که دارای تشابه هندسی باشند یعنی با ضرب ابعاد هندسی یکی از آنها در عدد ثابتی ، ابعاد هندسی متناظر ماشین دیگربه دست آید . اگر این دو ماشین طوری کار کنند که خطوط جریان آنها نیز تشابه هندسی داشته باشند ، گوییم دو ماشین تشابه کاری دارند . در این صورت بین مشخصات کاری دو ماشین نیز تشابه وجود خواهد داشت . برای آنکه بتوانیم در طراحی یک توربوماشین نمونه از اطلاعات مربوط به مدل آن استفاده کنیم ،
بایستی مدل و نمونه علاوه بر تشابه هندسی ، تشابه کاری نیز داشته باشند . متأسفانه مجبوریم از اثرات لزجت صرف نظر کنیم ، زیرا عموما نمی توان هم دو شرط فوق الذکر را برقرار کرد و هم اعداد رینولدز مدل و نمونه را برابر نمود .
در صورتی که خطوط جریان در دو ماشین مشابه باشند ، دیاگرام سرعت ها در ورود به یا خروج از پروانه های دو ماشین مشابه خواهند بود . در شکل(1) دیاگرام سرعت ها در خروجی پروانه یک پمپ نشان داده شده است . حال با نشان می دهیم . استفاده از این شکل ، شرط تشابه الگوی جریان را فرمول بندی می کنیم . زاویه پره را به
نشان می دهیم . سرعت مطلق سیال از جمعِ u و سرعت محیطی پروانه را به v سرعت سیال نسبت به پره را به
نشان می دهیم . مولفه سرعت مطلق در امتداد شعاعیV به دست می آید . سرعت مطلق سیال را به u و v برداری
نشان می دهیم . متناسب با دبی است . زاویه سرعت مطلق با سرعت محیطی را به Vr نشان می دهیم . Vr را به
در آنها یکسان باشد و شرط تشابه کاری ایجاب می کند شرط تشابه هندسی دو ماشین ایجاب می کند که زا ویه
در آنها یکسان باشد . که زاویه
و دبی حجمی D، قطر پروانه N در ماشین های مشابه را می توانیم بر حسب سر عت دورانی شرط برابری
بیان کنیم . Q جریان
. Vr متناسب است با u و V متناسب است با Vr ثابت ، است ، پس به ازای Vr = Vsin چون
را می توان به صورت زیر بیان کرد : بنابراین شرط برابری
متناسب است با Vr ، پس D2 برابر است با دبی تقسیم بر سطح جریان . چون سطح جریان متناسب است با Vr
.ND متناسب است با u، پس N متناسب است با و D متناسب است با r . چون r برابر است با u از طرفی
لذا رابطه فوق را می توان به صورت زیر بیان کرد :
این رابطه شرط تشابه کاری ماشین های مشابه است .
بیان کنیم . برای این کار از فرمولA و یک سطح مقطع مثل H دبی ماشین های مشابه را می توانیم بر حسب ارتفاع
اریفیس یعنی :
Q = CdA
برای ماشین های مشابه می توان نوشت :Cd استفاده می کنیم . با ثابت فرض کردن
با تغییر عدد رینولدز تغییر کمی می کند . به همین دلیل راندمان ماشین هایCd است . البته D2 متناسب با A زیرا
مشابه با ابعاد مختلف کمی متفاوت است . تغییر راندمان با تغییر عدد رینولدز را اثر مقیاس گویند . در ماشین های کوچکتر ، شعاع هیدرولیکی مجاری کوچکتر است ، لذا عدد رینولدز جریان کمتر است ، از این رو ضریب اصطکاک بزرگتر است و بنابراین راندمان کمتر می باشد . اختلاف راندمان مدل و نمونه می تواند 1تا 4 در صد باشد .
در تئوری تشابه از اثر مقیاس صرفنظر می شود و لذا برای تعیین راندمان نمونه از روی راندمان مدل باید از روابط تجربی استفاده کرد .
از معادلات بالا به دست می آوریم :Qبا حذف
ذیلا برای روشن تر شدن موضوع ، روابط تشابهی فوق را با استفادعه از آنالیز ابعادی به دست می آوریم .