اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود گزارش کارآموزی ساختمان سازی شرکت بلند پایه

اختصاصی از اینو دیدی دانلود گزارش کارآموزی ساختمان سازی شرکت بلند پایه دانلود با لینک مستقیم و پر سرعت .

دانلود گزارش کارآموزی ساختمان سازی شرکت بلند پایه


دانلود گزارش کارآموزی ساختمان سازی شرکت بلند پایه

در زیر به مختصری ازعناوین و چکیده آنچه شما در این فایل دریافت می کنید اشاره شده است :

کارآموزی ساختمان سازی شرکت بلند پایه

فهرست

1- معرفی شرکت بلندپایه      2

پروژه‌های شرکت بلندپایه     2

وضعیت سازمانی شرکت     4

2- معرفی پروژه احداث سازه، تأسیسات و معماری ایستگاه B4 متروی تهران   5

تاریخچه‌ای از متروی تهران 5

ایستگاه B4          7

وضعیت سازمانی کارگاه      7

کلیات ساختمان ایستگاه        8

روش ساخت ایستگاه B4      8

سازه نگهبان ایستگاه           9

روش اجرای سازه نگهبان ایستگاه       11

3- گزارش فعالیت‌های انجام‌شده در دفتر فنی       25

معرفی دفتر فنی کارگاه        25

4- فعالیت‌های کارآموز        26

5- تشریخ برخی از فعالیتهای انجام شده در دفتر فنی          30

متره قالب بندی ایستگاه       30

سازه نگهبان رکتیفایر          30

جانمایی شمع‌های اصلی سازه            31

6- عکسهایی از فعالیت های کارگاه      32

7- مقایسه دروس دانشگاهی با نحوه اجرای کار   35

درس سه واحدی تکنولوژی بتن         35

8- ارزیابی شخصی از دوره کارآموزی 36

9- ارائه‌ی پیشنهاد توسط کارآموز       37

1-9-ارائه‌ی پیشنهاد برای بهبود صنعت احداث خطوط مترو          37

استفاده از تجهیزات مکانیزه  37

گسترش نقش رایانه            37

2-9-ارائه‌ی پیشنهاد برای افزایش بازدهی کارآموزی       

گسترش نقش کارآموزی در تحصیلات عالی      

آشنا نمودن دانشجویان با اهمیت مباحث درسی   

تشکیل محیطی دانشگاهی برای بررسی مشکلات صنعتی

این فایل شامل : صفحه نخست ، فهرست مطالب و متن اصلی می باشد که با فرمت ( word ) در اختیار شما قرار می گیرد.

(فایل قابل ویرایش است )

تعداد صفحات : 36


دانلود با لینک مستقیم


دانلود گزارش کارآموزی ساختمان سازی شرکت بلند پایه

گزارش کارآموزی بازیافت سرباره حاصل از کوره بلند شرکت تارابگین

اختصاصی از اینو دیدی گزارش کارآموزی بازیافت سرباره حاصل از کوره بلند شرکت تارابگین دانلود با لینک مستقیم و پر سرعت .

گزارش کارآموزی بازیافت سرباره حاصل از کوره بلند شرکت تارابگین


گزارش کارآموزی بازیافت سرباره حاصل از کوره بلند شرکت تارابگین

در زیر به مختصری ازعناوین و چکیده آنچه شما در این فایل دریافت می کنید اشاره شده است :

مقدمه

شرکت تارابگین

از آنجایی که نگرش صحیح به مباحث انرژی و بهره گیری مفید از آن امروز ذهن صنعتگران را به خود مشغول نموده به جرات می توان بیان کرد که عایق و به طور جامع صنایع تولید کننده عایق توانسته است تا حد بسیاری در نیل به این هدف روششن یاریگر مجموعه صنعت کشور باشند .

امروز یکی از مهمترین و بارزترین صنایعی چون پالایشگاهها ، نیروگاهها ، کارخانه های تولید سیمان ، پتروشیمیها ، صنایع خودرو سازی ، ساختمان و تاسیسات خانگی مبحث عایق بوده که با استفاده از آن می توان فرایند اتلاف انرژی را کنترل کرد .

شرکت تارابگین با هدف بازیافت سرباره حاصل از کوره بلند ذوب آهن اصفهان و همچنین تامین بخشی از نیازهای این مجموعه توسط شرکت معتر اتریشی VOEST- ALPINE در منطقه صنعتی ذوب آهن در قطعه زمینی با مساحت چهل هزار متر مربع احداث گردید که پس از نصب ماشین آلات و آموزش پرسنل در کشور اتریش رسماً از سال 1357 به بهره برداری رسید .

این مجموعه از بدو سرمایه گذاری تا سال 1373 تحت پوشش شرکت ملی فولاد بوده که از ان سال در راستای سیاست خصوصی سازی دولت محترم به شرکت تکادو که خود از طلایه داران و پیشروان این جریان بوده واگذار گردید . از آن زمان تا به امروز توانسته ایم توجه کارخانجات و شرکت های داخلی و خارجی بسیاری را به خود جلب کنیم . نگرش کلی و اساسی ما بر تامین کمی و کیفی نیازمندیهای صنایع مختلف بوده که در این راه تخصص و فن آوری را خدمت گرفته ایم .

این فایل شامل : صفحه نخست ، فهرست مطالب و متن اصلی می باشد که با فرمت ( word ) در اختیار شما قرار می گیرد.

(فایل قابل ویرایش است )

تعداد صفحات : 17

 

 


دانلود با لینک مستقیم


گزارش کارآموزی بازیافت سرباره حاصل از کوره بلند شرکت تارابگین

دانلود مقاله فناوری سوپرفریم در اجرای ساختمان های بلند

اختصاصی از اینو دیدی دانلود مقاله فناوری سوپرفریم در اجرای ساختمان های بلند دانلود با لینک مستقیم و پر سرعت .

 

 

پیشگفتار
فناوری در صنعت ساختمان مقوله ای است که در کشورهای پیشرفته، بخصوص آنهایی که با خطر زلزله مواجه هستند بشکل کاملأ پویا در حال پیشرفت است. امروزه برای هر کالای تولیدی، افزودن جنبه های نوآوری و افزایش بهره دهی برای بازاریابی آن ضرورت دارد. افزایش دانایی مردم وامکان انتخاب های مبتنی بر دانایی روز به روز در حال گسترش است. در صنعت ساختمان نیز لازم است ، در طراحی ها، تکیه بر نوآوری ها و استفاده از فناوری های پیشرفته الگوی تولید ساختمان قرار گیرد.
ارتقاء فنی در صنعت ساختمان خود موجب می گردد تا ساختمان سازی از حالت سنتی و با کیفیت پایین آن خارج شده و در زمره فعالیت شرکت های پویا و فنی قرار گیرد. به همین دلیل در کنار ترویج فرهنگ استفاده از فناوری های پیشرفته در صنعت ساختمان ، تشکیل شرکتهای سازنده با خط فکری ارتقاء کیفیت ضرورت پیدا می کند.
واژه های کلیدی : بتن پر مقاومت،‌ اسکلت پیش ساخته بتنی، کابل های پیش تنیده، میراگرهای ویسکوز
فرآیند تولد فناوری سوپرفریم
تکنولوژی سوپر فریم که جزو آخرین و پیشرفته ترین فناوری ها در صنعت ساختمانهای بلند است حاصل ترکیب چهار فناوری است که در صنعت ساختمان در زمانهای قبل از آن توسعه یافته وبمورد اجرا گذاشته شده است. این چهار فناوری عبارتند از فناوری HiRC یا بتن پرمقاوم، فناوری R-PC یا اسکلت بلند پیش ساخته بتنی، فناوری استفاده از کابلهای پس تنیده پر مقاوم، و فناوری استفاده از میرا گرهای ویسکوز ویژه یا Hi Damper است. برای شناخت بهتر سیستم فناوری سوپر فریم، لازم است بطور مختصر به توضیح هر یک از فناوری های فوق پرداخته شود.
فناوری بتن پر مقاوم یا HiRC
با افزوده شدن بر ارتفاع ساختمانها و تولید آسمانخراشها و برجهای بلند ساختمانی، در ابتدا استفاده از فولاد رایج گردید. اگرچه هم اکنون نیز سازه های فولادی برای ساختمانهای بلند مورد مصرف زیاد دارد، لیکن به دلیل روشن شدن مزیت های ساختمانهای بتن آرمه ، بخصوص مقاومت بیشتر در مقابل حریق و عایق صوتی بودن آن، استفاده از سازه های بتن آرمه در ساختمان های بلند نظر سازندگان را بخود جلب نموده است. بر این اساس تحقیقات دامنه داری شروع شد و استفاده از آن رایج گردیده است . با توجه به اینکه قطعات بتن آرمه در اسکلت ابعاد بزرگی داشته و فضای زیادی را اشغال می نمایند، محققین در صدد تولید بتن های با مقاومت بالا برآمدند. و با توجه به تولید مواد مضاف مناسب برای تولید بتن های متنوع، استفاده از بتن پر مقاوم با مقاومت حداکثر 80Mpa در ساختمان ها مورد تصویب قرار گرفت .
از نظر آیین نامه های ویژه ساختمانهای بلند در کشور ژاپن ،استفاده از بتن با مقاومت 60Mpa در ساختمانهای مسکونی و تجاری مورد قبول همگان قرار گر فت.
‏استفاده از بتن پر مقاوم از نظر ترکیب استفاده از شبکه های آرماتورگذاری شرایط خاصی را می طلبد به بیان دیگر نمی توان تنها از روش های رایج آرما تورگذاری در این نوع قطعات استفاده نمود، زیرا با افزودن بر مقاومت بتن در اکثر موارد بر مقاومت میلگردها نیز افزوده می شود. مجموعه این عمل موجب کاهش شکل پذیری در عضو شده و لذا استفاده از آن را به بخش های خاصی از ساختمان محدود می کند. بر این اساس انجام آزمایش های متعدد فناوری HiRC ر ا بوجود آورده است که تقریباً از 30 ‏سال پیش در ساختمانهای بلند و آسمانخراشها مورد استفاده قرار گرفته است. شکل 1 ‏محدوده استفاده از بتن پر مقاوم و میلگردهای پر مقاوم را در تکنولوژی HiRC نشان می دهد. در شکل 2 یک نوع از میلگردگذاری در چنین سیستم هایی ارائه شده است .

فناوری اسکلت بلند پیش ساخته بتنی یا R-Pc

فناوری پیش ساخته یکی از مهمترین قدمهایی بود که از اوایل قرن بیستم برای صنعتی کردن ساختمان سازی و تولید انبوه آن برداشته شد. استفاده از صنعت پیش ساخته بخصوص در کشورهای بلوک شرق (سابق) بطور وسیعی مورد استفاده قرار گرفت. روش ساخت با فناوری پیش ساخته دارای محاسن زیر می باشد :
• تولید صنعتی و تولید انبوه
• سرعت اجرای زیاد
• کنترل کیفیت و تولید قطعات مرغوب و پر مقاوم
در طول استفاده از این فناوری به نکات ضعف این روش برخورد نمودند. که عمده ترین نکات ضعف این روش عبارتند از:
• ‏ ضعف اتصالات در برابر نیروهای حاصل از زلزله
• عدم انعطاف پذیری از نظر معماری
• ‏وزن زیاد قطعات
با توجه به مزیت های زیاد این فناوری، در کشور ژاپن که شدیداً زلزله خیز است، تحقیقات دامنه داری توسط شرکت های ساختمانی انجام پذیرفت. تحقیقات بطور عمده برای رفع نکات ضعف در سیستم های پیش ساخته بود. بر این اساس با طراحی اتصالات متعدد و انجام آزمایش های بزرگ مقیاس توانستند اتصالا تی را بوجود آورند که در زلزله آسیب به ساختمان وارد نشود. همچنین با تمرکز بر اجزای باربر ، عدم انعطاف در معماری را بطور کل حل نمودند، بطوریکه با روش اجزای پیش ساخته بتنی هر گونه معماری را می توان بمرحله اجرا گذاشت. البته سنگینی قطعات پیش ساخته در مقابل سرعت ساخت آنها با تولید جرثقیل های برجی و یا متحرک قوی چندان مورد توجه قرار نگرفته است و لازم است برای نصب قطعات پیش ساخته بخصوص برای ساختمانهای بلند از ماشین آلات مناسب آنها استفاده نمود.
فناوری استفاده از کابلهای پس تنیده
سالیان دراز است که از کابلهای پس تنیده برای ایجاد دهنه های بزرگ در پلها استفاده می شود، لیکن استفاده از آن در ساختما نها کمتر مورد توجه بوده است. با پیشرفت و توسعه اقتصادی کشورها ، قیمت زمین و سپس هزینه متر مربع زیر بنا افزایش یافت و طراحان به این فکر افتادند که فاصله ستونها را افزایش داده و در فضاهای داخلی ساختمانها انعطاف بیشتری از نظر معماری و عملکرد بوجود آورند. بهمین دلیل روز بروز بر استفاده از سیستم های پس تنیده در ساختمانها افزوده شده است. در پی پیشرفت های متعدد، استفاده از سیستم های پس تنیده برای ساختما نهای خاص نیز توسعه وسیعی پیدا کرده است .
فناوری استفاده از میرا گرهای ویسکوز ویژه Hi Damper
یکی از راههای کاهش نیرو های دینامیکی در ابزارهای صنعتی و خودروها از دیر باز، استفاده از میرا گرها بوده است. میرا گرهای ویسکوز که بطور عمده با استفاده از روغن های غلیظ با درجه غلظت ثابت در درجه حرارت های مختلف ساخته می شوند دارای سیستم شیرهای کنترل می باشند که با کنترل جریان روغن از شیر و با محاسبه غلظت روغن می توان به عملکرد میرا گر با ضریب ‏میرایی مورد محاسبه دست پیدا کرد .
با افزودن میراگرهای کمکی می توان انرژی سازه را مستهلک نمود و به این ترتیب پاسخ های سازه را کاهش داد میراگرهای اصطکاکی با ایجاد اصطکاک و میراگرهای وسیکوالاستیک با افزایش سختی جانبی و میرایی ویسکوز انرژی را مستهلک می کنند . میراگر با سیال ویسکوز نیز از یک مخزن و یک سری لوله پر از سیال تشکیل شده و با عبور جریان در محفظه بسته انرژی را مستهلک می گرداند . هر چقدر ویسکوزیته بالاتر باشد ، استهلاک انرژی بیشتر است . این گونه میراگرها به ابعاد وسیع نیاز ندارند و راندمان بالاتری نسبت به میراگرهای اصطکاکی و ویسکوالاستیک دارند .
استفاده از میرا گرهای ویسکوز در ساختمان نظر مهندسین را از سالها پیش بخود جلب نموده بود، لیکن پس از زلزله کوبه ژاپن در سال 1995 ‏استفاده از میرا گر و جدا کننده پی بشدت افزایش یافت بطوریکه گزارشها از ده برابر شدن استفاده از آن خبر می دهند. در شهر کوبه دو ساختمان مجهز به دستگاه شتابنگار وجود داشت که در حین زلزله عملکرد آنها را ثبت نمودند. این دو ساختمان مجهز به میرا گر و جدا کننده پی بودند.
رفتار بسیار خوب این دو ساختمان موجب گرد ید که کارشناسان ژاپنی و آمریکا یی، با رغبت خیلی زیادی استفاده از میرا گرها را در دستور کار خود قرار دهند .
ترکیب فناوری ها
‏پیشرفتهای زیادی که در سایه انجام آزمایش های بزرگ مقیاس در آزمایشگاههای مجهز در صنعت ساختمان بوجود آمده، ترکیب فناوری های متعدد را در یک ساختمان ممکن ساخته است . فناوری سوپر فریم یکی از این نوع پیشرفتهاست که طراحی آن مستلزم انجام آزمایشهای بزرگ مقیاس بوده است. انجام آزمایش پیچش در هسته مرکزی و تهیه طرح میلگرد گذاری در آن و انجام آزمایش بر روی عملکرد خمیری سقفهای مسطح جزو این آزمایشها هستند. بطور کلی تلفیق چهار فناوری ذکر شده در بندهای فوق عملکرد ویژه ای دارد که کمک می کند تا سازه در زلزله های شدید رفتار کاملاً مشخصی داشته و اجزای اصلی ( ستونها و هسته مرکزی) به حد خمیری وارد نشوند تا ساختمان پس از وقوع زلزله های شدید نیز با تعمیر اندک در نقاط مشخص شده در سقف، بهره برداری خود را حفظ نماید.
استفاده از فناوری سوپر فریم در ساختمانهای مسکونی
ساختمان مسکونی از نظر اسکلت باید نه تنها مقاوم در برابر نیرو های زلزله ساخته شود بلکه باید دارای دوام لازم در مدت زمان پیش بینی شده برای بهره برداری از آن باشد . اگر چه از نظر عملکرد اقتصادی میتوان بخشهایی از ساختمان را از مصالح سبک بنا نمود ، اما اسکلتی که بتواند عملکرد درست داشته باشد معمولاً وزن قابل ملاحظه ای از ساختمان را به خود اختصاص می دهد . با افزایش ارتفاع و بتبع آن نیروهای حاصل از زلزله موجب می گردد تا مقاطع باربر ساختمان بسیار بزرگ شده و تکان های ناشی از نیروهای زلزله نیز در طبقات فوقانی شدید شوند (شتاب و تغییر مکان های بیشتر از حد مجاز ) برای اجتناب از این مقوله ها روشی تحت عنوان سوپرفریم R.C برای اسکلت ساختمان ابداع شده و به عنوان جدیدترین فناوری به مورد اجرا گذاشته شده است .

 

 

 

ساختمان فلزی یا بتن آرمه
‏در کشور ژاپن ترجیح میدهند که ساختما های مسکونی را با اسکلت بتن آرمه بنا کنند . اسکلت فلزی بیشتر برای اجرای ساختمانهای اداری و تجاری ، ایستگا هها و غیره مورد استفاده قرار می گیرد. دلیل انتخاب اسکلت بتن آرمه را برای ساختما ن های مسکونی میتوان به شرح زیر بیان نمود :
• ساختما نهای بتن آرمه اغلب ارزانتر از ساختما نهای فلزی هستند .
• ساختمانهای بتن آرمه در مقابل سوانح آتش سوزی و انفجار دوام بیشتری دارند .
• ‏در ساختمانهای بتن آرمه ، انتقال صوت مابین طبقات( با توجه به اهمیت آن بخصوص در آپارتمانهای مسکونی) کمتر است .
• ‏با توجه به هماهنگی مناسب مابین اجزاء جذب کننده نیرو های زلزله و اسکلت ( با قراردادن دیوار برشی ) رفتار ساختمان مناسبتر است .
اجزاء اصلی سازه سوپرفریم R.C
با تشریح اسکلت یک ساختمان اجرا شده به روش سوپرفریم می توان به نحوه عملکرد آن پی برد .
شکل 3 به طور شماتیک اسکلت و شکل 4 نمای چنین ساختمانی را نشان می دهد .

 

همانطور که ملاحظه می گردد، بخشهای باربر ساختمان ازشش جزء تشکیل شده است .این اجزاء را میتوان بصورت زیر تشریح نمود:
1- سوپر وال
‏سوپر وال یا دیوار برشی مرکزی هسته اصلی باربر نیرو های قائم و بخصوص نیرو های زلزله می باشد که با مقطع Hشکل اجرا می گردد. این دیوار برشی که در هسته ساختمان قرار می گیرد از بخش پایین بر روی فونداسیون قرار گرفته ودر بخش بالای خود به سوپر بیم منتهی می گردد. دیوار برشی به صورت بتن در جا اجرا می گردد که بتن آن در بخش های پایین بتن پر مقاوم است. با در نظر گرفتن شکل پذیری ساختمان، مقاومت بتن سوپر وال از 60 ‏نیوتن بر میلی متر مربع در بالای فونداسیون به مرور به مقدار 36 ‏نیوتن بر میلی متر مربع در بخش بالایی آن تقلیل می یابد. آرایش میلگردگذاری آن بر اساس انجام آزمایشهای آزمایشگاهی بر روی قطعات مدل طراحی شده است.از نظر اجرایی ، سوپر وال همیشه با دوطبقه جلوتر از اجرای کفها پیش می رود تا وقفه ای در کار ایجاد نشود .میلگردهای این بخش، بدلیل سنگینی زیاد در سطح زمین ساخته شده و بوسیله جرثقیل برجی در محل خود نصب می گردد. جرثقیل برجی باید قادر به جا بجایی 10 ‏تن بار باشد. شکل 5 و (1-5) ‏مرا حل اجرای این دیوار برشی را نشان می دهد.

 

 

 



2- ستون های اتصالی
در طرح سوپر فریم، در هریک از نماهای ساختمان دو ستون اتصالی و جمعا به تعداد هشت عدد تعبیه می گردد. این ستونها که بزرگترین مقطع ستون را در ساختمان دارند دارای مقطع متر می باشند و بدلیل قرار گرفتن آنها در نمای ساختمان، فضای داخلی اشغال نمی شود. وظیفه اصلی این ستونها، انتقال نیروی زلزله از بالای ساختمان بر روی پی می باشد. این ستونها بصورت پیش ساخته درکارگاه ساخته می شوند. با توجه به اهمیت این ستونها در محافظت ساختمان از تصادم اشیای خارجی در حین بهره برداری و با توجه به عملکرد آنها، کنترل کاملا دقیق بر روی قطعات پیش ساخته انجام می شود و اگر بتن ستونی مناسب نبوده باشد آن ستون از نصب بر روی سازه حذف می گردد. مقاومت بتن در این ستونها نیز بصورت هماهنگ با سوپر وال از 60 تا36 ‏نیوتن بر میلی متر مربع متغیر است. در شکل 6 ‏ستو نهای پیش ساخته دپو شده در محل کارگاه نشان داده شده است .

 

3- لوازم جذب انرژی (میراگرها)
‏یک ساختمان بلند باید در مقابل تکانهای شدید ناشی از زمین لرزه رفتار کاملا پیش بینی شده را داشته باشد. قراردادن لوازم جذب انرژی اگر چه از حدود 30 ‏سال پیش در دنیا رواج پیدا کرده است اما گذاشتن نوع خاصی از آنها در بالای ساختمان تنها در تکنیک سوپر فریم استفاده می شود. لوازم جذب انرژی که همانند یک کمک فنر بسیار بزرگ عمل می کنند رفتار ساختمان را کنترل کرده و سطح تنش ها را بمیزان قابل ملاحظه ای کاهش می دهند در ساختمان سوپر فریم با ارتفاع 33 طبقه تعداد 32 ‏عدد از آنها که چهار عدد برروی هر ستون اتصالی قرار می گیرد نصب خواهد شد. بنابراین در هنگام وقوع زلزله، نیرو های حاصل از زلزله بر دیافراگم های هر طبقه اثر کرده و نیروها به سوپر وال منتقل می گردد.سوپر وال با جذب نیروها تغییر مکانها را به بالاترین نقطه ساختمان منتقل می کند. تغییر مکانها به چهار عدد سوپر بیم که در بالای سوپر وال قرار می گیرند منتقل شده و از طریق آنها به لوازم جذب انرژی انتقال می یابند. این لوازم هم بصورت فشاری و هم کششی عمل کرده و نیرو های زلزله را پس از کاهش دادن بر روی ستونهای اتصالی منتقل می کنند و همانطور که ذکر شد، نیروها سپس از طریق ستونهای اتصالی به صورت قائم بر روی پی منتقل می گردند، در شکل 7 ‏تصویر میرا گرهای نصب شده برروی ساختمان مشاهده می گردد.

 

 

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله15   صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله فناوری سوپرفریم در اجرای ساختمان های بلند

دانلود مقاله کنترل فعال متمرکز و نامتمرکز سازه‌های بلند در حالت سه بعدی با پسخورجابجایی و سرعت

اختصاصی از اینو دیدی دانلود مقاله کنترل فعال متمرکز و نامتمرکز سازه‌های بلند در حالت سه بعدی با پسخورجابجایی و سرعت دانلود با لینک مستقیم و پر سرعت .

 

 

 

نیاز به ترازهای ایمنی بالاتر در سازه‌های بااهمیت، تامین پایداری و ایجاد محدودیت‌هایی در خصوص میزان لرزش به لحاظ احساس ایمنی ساکنین در سازه‌های بلند از اهداف اصلی طراحان و مهندسان عمران می‌باشد. در این گونه سازه‌ها بکارگیری سیستم‌های کنترل ارتعاشات سازه‌ای به صورت فعال و غیرفعال مرسوم بوده و برخی از آنها نیز کاربردی شده‌اند. در این مقاله کنترل متمرکز سازه‌های بلند تشریح شده و در خصوص نامتمرکز کردن این کنترل به گونه‌ای که بر رفتار کلی سازه تاثیر مثبت داشته باشد، پژوهش گردیده است. در این پژوهش سازه به صورت سه بعدی مدل شده و الگوریتم کنترل فعال بهینه لحظه‌ای، با پسخور جابجایی و سرعت جهت حل معادلات کنترل استفاده شده است. روابط حاکم بر پایداری سازه در حالت نامتمرکز و نوشتن الگوریتم حل معادلات به گونه‌ای که پایداری سازه در کلیه حالت‌ها برقرار باشد، بحث و اثبات گردیده و در انتها نمونه‌های عددی از حل روابط و معادلات حاکم با توجه به حالت‌های گوناگون از نامتمرکزسازی کنترل در سازه‌‌های بلند ارائه شده است. یکی از حالت‌‌های نامتمرکزسازی کنترل به تقسیم سازه اصلی با تعداد 3n درجه آزادی به زیرسازه‌‌هایی با تعداد 3ni درجه آزادی گفته می‌شود که مجموع تعداد درجه آزادی زیر سازه‌ها برابر با تعداد درجه آزادی سازه اصلی می‌باشد.
واژه‌های کلیدی: سازه‌های بلند، متمرکز، نامتمرکز، سه بعدی، پسخور

 

1. مقدمه
کنترل فعال (Active Control) ‌سازه‌ها به طور کلی شامل دو بخش الگوریتم‌های مورد نیاز جهت بدست آوردن مقدار نیروی کنترل و مکانیزم‌های اعمال نیرو می‌باشد. در این نوع کنترل، از الگوریتم‌های گوناگونی که دارای دیدگاه‌های کنترلی متفاوتی می‌باشند، استفاده می‌شود. الگوریتم‌هایی نظیر کنترل بهینه، کنترل بهینه لحظه‌ای (Instantaneous Optimal Control)، جایابی قطبی (Pole Assignment)، کنترل فضای مودی (IMSC)، پالس کنترل و الگوریتم‌های مقاوم (Robust) مانند ، ، کنترل مود لغزش (Sliding Mode Control) و غیره از جمله الگوریتم‌های به کار رفته در کنترل سازه می‌باشند. با توجه به تعریف‌هایی که از کنترل فعال توسط آقای یائو (Yao) و سایر پژوهشگران شده است یک سیستم کنترل فعال شامل بخش‌های زیر می‌باشد (شکل 1):

شکل 1: الگوریتم کلی کنترل فعال سازه در حالت کنترل متمرکز
سیستم‌های کنترل را می‌توان در دو دسته سیستم‌های معمولی و سیستم‌های بزرگ مقیاس (Large Scale Systems) در نظر گرفت. در سیستم‌های معمولی، کنترل سازه به صورت متمرکز مناسب بوده و نیازی به تقسیم سیستم به سیستم‌های ریزتر نمی‌باشد ولی در سیستم‌های بزرگ مقیاس نظیر ساختمان‌های بلند و حجیم، اندازه سیستم کنترلی و حجم آن در انتقال و جابجایی اطلاعات و فرمان‌ها، به ویژه با توجه به اینکه نیروهای لرزه‌ای در مدت زمان کوتاهی (کمتر از دقیقه) بر سازه وارد می‌شوند، مشکل ایجاد کرده و تأخیر زمانی قابل توجهی در صدور فرمانها به وجود می‌آورد. بر این اساس تلاش می‌شود تا هر بخش از سیستم به صورت مستقل کنترل شود. به هر بخش زیرسیستم گفته شده و یک سیستم از تعداد معینی زیرسیستم (Subsystem) تشکیل می‌شود (شکل 2).

شکل 2: الگوریتم کلی کنترل فعال در حالت کنترل غیرمتمرکز با سه زیرسیستم
شیوه ریز کردن یک سیستم به چند زیر سیستم بستگی به طرح سیستم از نظر سازه‌ای، درجات آزادی آن و میزان گستردگی فیزیکی آن دارد. کنترل غیرمتمرکز در آغاز در مورد سیستم‌های قدرت بکار رفته و سپس توسط افرادی مانند یانگ و سیلژاک (Yanng & Siljack) گسترش یافته است. در این کنترل، آقایان ونگ و دیویدسون (Wang & Davidson) مساله پایداری سیستم را بررسی کردند. آنها یک شرط لازم و کافی را برای اینکه سیستم تحت قوانین کنترلی با پس‌خور محلی و جبران‌سازی دینامیکی پایدار باشد، بیان کردند.
کنترل غیرمتمرکز در مهندسی عمران اولین بار توسط ویلیامز و ژو (Williams & Xu) در سازه‌های فضایی انعطاف‌پذیر بررسی شد. سپس ریاسیوتاکی و بوسالیس (Ryaciotaki & Boussalis) از روش کنترل تطبیقی مدل مرجع (Reference Adaptive Control Theory Model) برای تعیین قانون کنترلی غیرمتمرکز استفاده کردند. آقایان دیکس و همکاران (Dix et al) چندین روش غیرمتمرکز را برای سازه‌های فضایی بیان کردند. هینو و همکاران (Hino et al) در مورد مسئله کنترل یک سازه ساختمانی چند درجه آزادی مانند یک ساختمان بلندمرتبه با بهره‌گیری از کنترل تطبیقی ساده غیرمتمرکز بحث کرده‌اند. آقایان رفویی و منجمی‌نژاد (Rofooei & Monajeminejad) نسبت به کنترل نامتمرکز سازه‌های بلند با بهره‌گیری از کنترل بهینه لحظه‌ای اقدام نمودند. آنها ابتدا به بررسی دلایل ضرورت استفاده از کنترل غیرمتمرکز پرداخته شده و سپس با طراحی کنترل‌کننده‌ها و ماتریس بهره (Gain Matrix) به بررسی دو حالت کنترل یکی با بهره‌گیری از پس‌خور سرعت و دیگری کنترل با بهره‌گیری از پس‌خور سرعت و جابجایی پرداختند.
آقایان منجمی‌نژاد و رفویی در ارتباط با کنترل غیرمتمرکز در سازه‌های بلند، به بررسی الگوریتم مود لغزشی (Sliding Mode) به صورت غیرمتمرکز پرداختند. مراحل طراحی کنترل‌کننده در روش مود لغزشی شامل دو مرحله است. مرحله اول شامل طراحی سطوح لغزش بوده و مرحله دوم طراحی رابطه کنترل یا قانون رسیدن (Reaching Law) را در بر می‌گیرد. باید توجه داشت که نامتمرکز بودن کنترل، قابلیت اعتماد را به پایداری سیستم افزایش داده و در صورت از کار افتادن کنترل یکی از زیرسیستم‌ها، سیستم کنترل دچار آسیب کلی نخواهد گردید. کنترل نامتمرکز می‌تواند در دو حالت با درنظر داشتن تاثیرات درجات آزادی مشترک بین زیرسیستم‌ها و یا بدون درنظر داشتن این تاثیرات انجام شود که البته در حالت با درنظر داشتن تاثیرات درجات آزادی به پایداری هر زیرسیستم و کل سیستم کنترل می‌توان اطمینان بیشتری داشت.
در این مقاله کنترل متمرکز و نامتمرکز سازه‌های بلند در حالت سه بعدی با درنظر داشتن درجات آزادی مشترک بین زیرسازه‌ها و اثر دوگانه آنها بر یکدیگر بررسی گردیده است. الگوریتم مورد استفاده کنترل بهینه لحظه‌ای‌ (Instantaneous Optimal Control) می‌باشد که توسط آقایان یانگ و همکارانش بسط داده شده و از پس‌خور سرعت و پسخور سرعت و جابجایی جهت محاسبه نیروهای کنترل استفاده گردیده است. روش نامتمرکز کردن کنترل در این مقاله بر اساس تعداد درجات آزادی بوده و برای هر دو جهت x و y الگوریتم محاسبه نیروهای کنترل یکسان می‌باشد. نمونه‌های عددی نیز با بکارگیری الگوریتم کنترل نامتمرکز حل و نتایج آنها با حالت کنترل متمرکز مقایسه گردیده و ارائه شده‌اند.
2. الگوریتم حل
1-2. روابط حالت متمرکز و نامتمرکز و مقایسه آنها
ساختمان بلند با n3 درجه آزادی و n طبقه شکل 3 در نظر گرفته شده و تحت اثر شتاب زمین قرار داده می‌شود. در حالت پیچشی فرض می‌شود سازه با سیستم کنترل ارتعاشی مجهز شده است. اگر جابجایی نسبی ترازهای مختلف سازه بلند نسبت به تراز پایه باشد، معادله حرکت سیستم ارتعاشی به شکل ماتریسی زیر می‌تواند نوشته شود:

در این حالت، ماتریس‌های و U زیر می‌توانند تعریف شوند:
بردار تغییر مکان درجات آزادی سازه:

بردار نیروهای کنترل

که در آن: n: تعداد طبقات ساختمان و 3a: تعداد کنترل کننده‌ها می‌باشد.
ماتریس جرم [M]، با فرض متمرکز بودن جرم سازه در هر طبقه ماتریسی قطری می‌باشد:

 

ماتریس سختی خواهد شد:

 


بردار ضریب تاثیر لرزه سازه به صورت زیر می‌باشد:

ماتریس میرایی از نظر شکلی، شبیه ماتریس سختی است، با این تفاوت که مقادیر Cyi, Cxi و Cθi جایگزین مقادیر Kθi, Kyi, Kxi می‌شوند.

که ضرایب میرایی سیستم در هر طبقه می‌باشد.
در این روابط xi‌ را می‌توان به دو صورت زیر تعریف کرد:
xi: جابجایی طبقه i-ام نسبت به یک دستگاه اینرسی (تغییر مکان نسبی) xi: جابجایی طبقه i-ام نسبت به طبقه زیرین آن (Drift)
H در حالتی که x جابجایی نسبت به دستگاه اینرسی باشد به صورت زیر است:

در فضای حالت با تعریف بردار حالت، معادله سیستم به صورت زیر در می‌آید: (در حالت میرایی)


حال اگر مطابق شکل (2) هرچند طبقه کنار هم به صورت یک زیرسیستم برگزیده شود، در این صورت برای موردی که سه زیرسیستم تعریف گردد، می‌توان روابط زیر را نوشت:

که در آن بردار ، بردارهای جابجایی طبقات و U1, U2, U3 بردارهای نیروی کنترل می‌باشد.

در آن xi: جابجایی طبقه iام نسبت به دستگاه اینرسی و Uk نیروی کنترل kامین کنترل کننده می‌باشد.
برای هر زیرسیستم می‌توان معادلات زیر را نوشت:

برای بردن معادلات هر زیرسیستم به فضای حالت، برای زیرسیستم میانی (شماره 2) خواهیم داشت:

برای زیرسیستم‌های 1 و 3 نیز به روش مشابه می‌توان معادله حالت را بدست آورد. در حالت کلی در فضای حالت این معادلات به صورت زیر می‌شود:

 


در حالت کلی اگر یک سیستم به N زیرسیستم و هر یک با ni طبقه تقسیم شود، معادله کلی زیرسیستم iام در فضای حالت برحسب جابجایی طبقات نسبت به دستگاه اینرسی به صورت زیر درمی‌آید:

که در آن Ui: فرمان کنترلی زیرسیستم کنونی و Ui-1: فرمان کنترلی زیرسیستم قبلی (فوقانی) است.
همین‌طور که از این رابطه دیده می‌شود در این حالت معادله یک زیرسیستم به فرمان‌های کنترلی زیرسیستم فوقانی آن بستگی دارد.
3. طراحی کنترلرها
بر اساس معادله فضای حالت مقدار نیروی کنترلها تابعی از جابجایی و سرعت می‌باشد و می‌توان نوشت:

که در حالت سه بعدی اگر کلیه درجات آزادی دارای کنترل باشد، ماتریس G ماتریسی 3n×6n بوده و اگر در تعداد a طبقه دارای کنترل باشیم، ماتریس به ابعاد 3a×6n است.
در این رابطه ماتریس‌‌های R و Q ماتریس‌های وزنی می‌باشند. ماتریس Q در حالت سه بعدی جمع سه ماتریس Qt, Qy, Qx می‌باشد:
Q=Qx+Qy+Qt
در رابطه بالا هر یک از ماتریس‌های Qt, Q¬y, Qx, Q به شرح زیر می‌تواند تعریف شود:

با توجه به مستقل بودن روابط در جهت x, y، مولفه‌های qxy¬, qyx صفر خواهند بود. به روش مشابه می‌توان برای Qx6n*6n، Qt, Qy نیز روابط زیر را نوشت:

که اگر این سه ماتریس در رابطه کلی پایداری لیاپانوف جایگذاری شود، می‌توان نوشت:
AT.Q+Q.A=A¬T(Qx+Qy+Qt)+(Qx+Qy+Qt)A=-Io
(A¬TQx+QxA)+(A¬TQy+QyA)+ (A¬TQt+Qt.A)=-Iox-Ioy-Iot
با تو جه به استقلال عمل نسبی هر یک از سه راستا می‌توان رابطه کلی بالا را به سه رابطه جداگانه تبدیل کرد:

طراحی کنترلرها برای حالت با پسخور جابجایی و سرعت
در این حالت برای رابطه کلی نیز باید ماتریس Io مثبت و نیمه معین باشد و با توجه به اینکه ماتریس Q=Qx+Q¬y+Qt است، با فرض مولفه‌های

و اعمال این مولفه‌ها در رابطه زیر می‌توان نوشت (برای نمونه جهت x):

به روش مشابه می‌توان برای سایر راستاها نیز این مساله را اثبات نمود. با توجه باینکه ρ یک عدد کوچک بزرگتر از صفر می‌باشد ( ) در نتیجه ماتریس Io می‌تواند به گونه‌ای تعریف شود که مثبت و نیمه معین باشد و در این صورت پایداری سیستم تامین و تضمین می‌شود.
با جایگذاری ماتریس Q پیشنهادی در رابطه ماتریس بهره (Gain Matrix) این ماتریس به شکل زیر درخواهد آمد:

در این حالت نیز می‌توان ماتریس G با ابعاد 3n*6n را تعریف نمود که بوده و عناصر قطری با عرض باند 6 و غیرصفر بوده و سایر مولفه‌ها صفر می‌باشند.
حال اگر فرض شود که سیستم با 3n درجه آزادی به سه زیرسیستم با درجات آزادی 3n3, 3n2, 3n1 تقسیم شود و 3n=3n1+3n2+3n3 باشد، می‌توان برای ماتریس G تقسیم‌بندی زیر را انجام داد:

و در نتیجه برای نیروهای کنترل اعمالی بر هر زیرسیستم می‌توان روابط زیر را برای ماتریس بهره آنها نوشت:

که مشابه حالت با پسخور سرعت، با توجه به ارتباط نداشتن زیرسیستم‌‌های یک و سه و نبودن ارتباط معکوس بین زیرسیستم‌های همسایه، ماتریس‌های G در آنها صفر بوده و و جود خارجی ندارند.
نیروهای کنترل برای هر زیرسیستم می‌توانند به صورت زیر نوشته شوند:

4. نمونه عددی
برای بررسی عددی الگوریتم پیشنهاد شده و اثبات یکی بودن نتایج دو حالت کنترل متمرکز و نامتمرکز این نمونه ارائه شده است. در این نمونه یک ساختمان 25 طبقه موردنظر است که جرم کلیه طبقات آن یکسان فرض شده و برابر ton750mi= می‌باشد. سختی هر 5 طبقه با یکدیگر یکسان و سختی از ترازهای پایین به بالا کاهش می‌یابد. مقدار این سختی در 5 طبقه پایین برابر MN/m4500 و در 5 طبقه آخر MN/m900 است. ماتریس میرایی نیز برابر K×05/0=C درنظر گرفته شده است. زمان تناوب 5 مود اول لرزش سازه به ترتیب برابر 21/0، 275/0، 39/0، 64/0 و 58/1 بوده و از مولفه S-E زلزله طبس 1375 (1978) با PGA=0.84g به عنوان برانگیختگی بیرونی اعمالی به سازه بهره گرفته شده است. در این سازه فرض شده در کلیه ترازها عملگر (actuator) وجود داشته و سازه در حالت غیرمتمرکز با تعداد درجات آزادی گوناگونی در هر زیرسیستم بررسی خواهد گردید. برای کنترل سازه از الگوریتم کنترل بهینه لحظه‌ای با ماتریس‌های وزنی زیر استفاده شده است:

با توجه باینکه سازه دارای سه درجه آزادی (طولی، عرضی و پیچشی) در هر تراز می‌باشد. ماتریس I و Q به ترتیب ابعاد 75×75 و 150×150 را خواهند داشت. ماتریس بهره در حالت با پسخور جابجایی و سرعت بوده و در این ماتریس و کلیه قسمت‌های محاسبات برابر S 005/0= می‌باشد، شبیه‌سازی و مدل در محیط matlab بوده و نتایج در حالت‌های مختلف بررسی شده‌اند.
در نمونه حاضر سختی سازه در هر دو جهت x, y یکسان درنظر گرفته شده و ورودی شتابنگاشت زلزله در این دو راستا یکی می‌باشد ورودی شتابنگاشت پیچشی بر سازه وارد نمی‌شود.
نتایج تحلیل سازه برای حالت‌های بدون کنترل و با کنترل در جدول شماره 1 ارائه شده. همانطوری که از مقادیر جدول پیداست، نتایج دو حالت کنترل متمرکز و غیرمتمرکز یکی می‌باشد و به همین دلیل نتایج هر حالت در یک ردیف مشترک ارائه شده است.
در حالت با کنترل جابجایی با افزایش مقدار η از 2‌‌10×1 به 4‌‌10‌×1 کاهش زیادی دارد، به گونه‌ای که مقدار آن در حالت 4‌10×1= η تقریباً حالت بدون کنترل می‌باشد. سرعت کاهش کمتری نسبت به جابجایی داشته (تقریباً ) و شتاب سازه مقدار کمی کاهش یافته است، به طوری که مقدار آن از m/s2 41/8 در حالت بدون کنترل به m/s288/7 در حالت با کنترل 4‌‌10×1=η رسیده است. مقادیر نیروی کنترل نیز در هر زیرسیستم به ترتیب کاهش یافته‌اند. در این جدول هر یک از زیرسیستم‌ها به ترتیب دارای 10، 8 و 7 طبقه و 30، 24 و 21 درجه آزادی می‌باشند.

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله 21   صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله کنترل فعال متمرکز و نامتمرکز سازه‌های بلند در حالت سه بعدی با پسخورجابجایی و سرعت

تحلیل و طراحی ساختمان های بلند بتنی متشکل از قاب و هسته بتنی با استفاده از روش های خطی و غیرخطی

اختصاصی از اینو دیدی تحلیل و طراحی ساختمان های بلند بتنی متشکل از قاب و هسته بتنی با استفاده از روش های خطی و غیرخطی دانلود با لینک مستقیم و پر سرعت .

تحلیل و طراحی ساختمان های بلند بتنی متشکل از قاب و هسته بتنی با استفاده از روش های خطی و غیرخطی


	 تحلیل و طراحی ساختمان های بلند بتنی متشکل از قاب و هسته بتنی با استفاده از روش های خطی و غیرخطی

 

 

 

 

 پایان نامه کارشناسی ارشد

 

 

خلاصه پایان نامه:

 در این پایان نامه در آغاز نمونه ای از سازه بیست طبقه بتنی متشکل از قاب و دیوار برشی با استفاده از یکی از روشهای کلاسیک دستی آنالیز و طراحی شده و سپس با بهره گیری از نرم افزار ETABS تحلیل و طراحی کامل خطی و کامپیوتری بر روی سازه صورت گرفته و سپس بخشی از سازه موردنظر توسط یک مدل سه بعدی با استفاده برنامه کامپیوتری HODA به صورت غیرخطی مورد آنالیز قرار گرفته و الگوی ترک در هسته مورد بررسی قرار گرفته است. در پایان از مقایسه نتایج حاصل از روشهای خطی و غیرخطی به میزان قابلیت اعتماد و کفایت ضوابط موجود در آئین نامه واقف گشته و به تصویر واقع بینانه تری از رفتار ساختمان و میزان جذب انرژی آنها در برابر بارهای اعمالی به سازه خواهیم رسید.

 


دانلود با لینک مستقیم


تحلیل و طراحی ساختمان های بلند بتنی متشکل از قاب و هسته بتنی با استفاده از روش های خطی و غیرخطی