دانلود با لینک مستقیم و پر سرعت .
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه14
نظریة اعداد شاخه ای است از ریاضیات که از خواص اعداد درست ، یعنی 1،2،3،4،5 و …
که اعداد شمار یا اعداد صحیح مثبت نیز نام دارند ، سخن می گوید .
شک نیست که اعداد صحیح مثبت نخستین اختراع ریاضی بشر است . به سختی می توان انسانی را مجسم کرد که ، لااقل در سطحی محدود ، قدرت شمارش نداشته باشد . یادداشتهای تاریخی نشان می دهند که سومریان باستان حدود 5700 ق . م تقویم داشته اند و از اینرو باید نوعی حساب می داشته اند.
حدود 2500 ق . م سومریها ، با استفاده از عدد 60 به عنوان پایه ، دستگاه اعدادی ابداع کردند . این دستگاه نصیب بابلیها شد که به مهارتهای والایی در حساب رسیدند . لوحهایی گلی بدست آمده از بابلیها شامل جداول ریاضی کاملی هستند و قدمتشان به 2000 ق . م می رسد .
وقتی تمدنهای باستان به سطحی رسیدند که اوقات فراغت برای تدقیق در اشیاء بدست آمد ، برخی به تفکر در سرشت و خواص اعداد پرداختند . این کنجکاوی به نوعی تصوف یا علم معانی رمزی اعداد منجر شد و حتی امروزه نیز اعدادی نظیر 3،7،11،13 نشانة خوش شانسی یا بدشانسی هستند.
بیش از 5000 سال قبل از آنکه کسی به فکر بررسی خود اعداد به طور اصولی باشد ، اعداد برای حفظ محاسبات و معاملات تجاری بکار رفته اند. اولین روش علمی برای بررسی اعداد صحیح ، یعنی مبدا، اصلی نظریة اعداد ، را عموماً به یونانیان نسبت می دهند.
حدود 600 ق . م ، فیثاغورس و پیروانش بررسی نسبتاً جامعی از اعداد صحیح کردند . آنان اولین کسانی بودند که اعداد صحیح را به طرق مختلف رده بندی کردند :
اعداد زوج : 2،4،6،8،10،12و…
اعداد فرد : 1،3،5،7،9،11 و …
اعداد اول : 2،3،5،7،11،13،17،19،23،29،31،37،41،43،47،53،59،61،67،71،73،79، و …
اعداد مرکب : 4،6،8،9،10،12،14،15،16،18،20 و …
یک عدد اول عددی است بزرگتر از 1 که تنها مقسوم علیه های آن 1 و خود عدد باشند . اعدادی که اول نباشند مرکب نام دارند . جز عدد 1 که نه اول گرفته می شود نه مرکب .
فیثاغوریان ، اعداد را به هندسه نیز مربوط ساختند . آنان مفهوم اعداد چند ضلعی را معرفی کردند : اعداد مثلثی ، اعداد مربعی ، اعداد مخمسی و … دلیلی این نامگذاری هندسی با نمایش اعداد به وسیله نقاط به شکل مثلث ، مربع ، مخمس و … بوده است .
رابطة دیگر اعداد با هندسه ناشی از قضیة معروف فیثاغورس است ، که می گوید : در هر مثلث قائم الزاویه مربع وتر مساوی مجموع مربعات دو ضلع دیگر است . فیثاغوریان به مثلثهای قائمی نظر داشتند