مقاله کامل بعد از پرداخت وجه
لینک پرداخت و دانلود در "پایین مطلب"
فرمت فایل: word (قابل ویرایش و آماده پرینت)
تعداد صفحات: 17
فهرست:
بی نهایت ها
نگرش باستانی در مورد بی نهایت
نگر ش های نوین آغازین در مبحث بی نهایت ها
ادراک ریاضی در مبحث بی نهایتها
نظریات مدرن بی نهایت ها
مطلق
اعداد اول
دترمیان با فرمول
بی نهایت ها
بی نهایت (از واژه لاتین "finitus" به معنی "محدود" گرفته شده – علامت ریاضی: ∞) چیزی است که "محدود" نیست، که در آن هیچ محدودیتی زمانی و فضایی وجود ندارد.در ریاضیات، با اصطلاح "انتقال-از-محدود(transfinite)" مشهور است؛ و چیزی است که فقط محدود نباشد، ولی ممکن است محدودیتهای دورتر از آن داشته باشد.
نگرش باستانی در مورد بی نهایت :
نگرش باستانی از ارسطو آغاز شده است:“... تفکر درباره یک عدد بزرگ همیشه ممکن است: چون تعداد دفعاتی که میتوان یک مقدار را به دو نیمه تقسیم کرد، بی نهایت است. بنابراین بی نهایت، امکان بالقوهای است که هرگز بالفعل نمی گردد؛ تعداد اجزایی را که می توان به دست آورد، همیشه از هر عدد معینی بیشتر است."
به این مورد اغلب بی نهایت "بالقوه" اطلاق می شود، به هرحال دو نظریه در این مورد با هم ترکیب شده اند:
یکی اینکه همیشه پیدا کردن چیزی هایی که تعداد آنها از هر عددی بیشتر باشد ممکن است، اگرچه آن چیزها عملا وجود نداشته باشند.
دیگر اینکه ما می توانیم بدون محدودیتی، اعداد بالاتر از محدود را شمارش کنیم. مثلا "برای هر عدد صحیح n، یک عدد صحیح m (m > n) وجود دارد همچنین ( Phi(m". دومین نگرش را بصورت واضح تر در آثار نویسندگان قرون وسطایی مثل William of Ockham میتوان یافت:
(هر زنجیره حقیقتا وجود دارد. بنابراین هر یک از اجزاء آن واقعا در طبیعت وجود دارد. اما اجزاء زنجیره نامحدود هستند چون هیچ عدد بزرگی نیست که عددی بزرگتر از آن نباشد، پس اجزاء نامحدود واقعا وجود دارند.)
اجزاء از بعضی جهات واقعا وجود دارند. بهرحال، در این نگرش، هیچ بزرگی بی نهایتی نمی تواند یک عدد داشته باشد، چون هر عددی را که تصور کنیم، همیشه عددی بزرگتر از آن وجود دارد: "هیچ بزرگی (از لحاظ عددی) نیست که بزرگتر از آن نباشد". Aquinas همچنین بر ضد این نظریه که بی نهایت می تواند از هر جهت کامل یا کلی باشد بحث کرده است مرجع.
نگر ش های نوین آغازین در مبحث بی نهایت ها :
گالیله (در زمان بازداشت طولانی در خانه اش در Sienna بعد از محکومیتش توسط استنطاق مذهبی) اولین کسی بود که متوجه شد می توان مجموعه ای از بی نهایت عدد را بصورت تناظر یک به یک با یکی از زیر مجموعه های حقیقی آن در کنار هم قرارداد. (هر جزئی از این مجموعه که با کل آن برابر نیست). مثلا ما می توانیم "مجموعه" اعداد زوج را {...،8. 6. 4، 2} با اعداد طبیعی {...،4، 3، 2، 1} بصورت زیر جور کنیم:
مقالة: آشنایی با بی نهایت هاو دترمیان و ارائه فرمولها