لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 15
مقدمه
سیستم دارورسانی نوین نانو: عبارت است از رساندن دارو در یک زمان معین و با دز کنترل شده به اهداف دارویی خاص می باشد. متدی که به وسیله آن دارو به بدن تحویل می شود، تاثیر معنی داری بر روی کارایی درمان دارد. سیستمهای دارورسانی متفاوتی از جمله سیستمهای دارورسانی حساس به محرک و سیستمهای دارورسانی هدفمند شده تحت تحقیق و بررسی می باشند. هدف رسانی، توانایی رساندن قسمت اعظم دارو به محل مورد علاقه و ارگان هدف می باشد.
آزاد سازی تحت کنترل دارو وتجزیه پذیری متعاقب آن فاکتور مهمی برای یک فرمولاسیون دارویی با آزاد سازی کنترل شده می باشد. مکانیسمهای بالقوه آزاد سازی دارو عبارتند از: 1- پس دهی و آزاد کردن داروی باند شده به سطح 2- دیفوزیون از خلال ماتریکسهای حامل 3- دیفوزیون از دیواره حامل برای میکروپارتیکل ها و میکروکپسولها 4- فرسایش و تخریب ماتریکس حامل 5- مکانیسم ترکیبی از پروسه فرسایش / دیفوزیون
نوع دارو، انتخاب روش تجویز و نوع سیستم دارورسانی در موفقیت درمان بسیار تاثیر گذار است. سیستمهای آزاد سازی نوسانی یا پاسخگو به محرک، اغلب سیستمهای دارورسانی با امتیازات برتری هستند زیرا دقیقا الگویی را تقلید می کنند، که طبق آن بدن هورمونهایی مانند انسولین و ... را آزاد می کند. این مهم با استفاده از پلیمرهای حامل دارو مانند هیدروژلها تامین می شود که به محرک خاصی پاسخگو هستند (مانند محرک دما، pH و الکتریسیته و...).
حاملهای سیستمهای دارورسانی
حاملهای کلوئیدی: که حاوی (محلولهای مسیلی، وزیکولی و کریستال مایعی)، علاوه بر پراکندگی های نانوپارتیکلی شامل ذرات کوچک با قطر 400-10 نانومتر، آینده های امید بخشی در زمینه سیستمهای دارو رسانی به شمار می روند.
میسلها: تجمعهای خودبخودی از کوپولیمرهای آمفی فایل در محلولهای آبی با قطر ذرات معمولا nm 50-5 هستند که برای اهداف دارورسانی مورد توجه زیاد قرار گرفته اند.
لیپوزومها: شکلی از وزیکولها هستند که از یک یا تعدادی دو لایه های لیپیدی مشابه آنچه در غشائ سلولی دیده می شود تشکیل شده اند. خصوصیت قطبی هسته لیپوزومی باعث می شود که داروهای قطبی بتوانند به خوبی در آن انکپسوله شوند.
دندریمرها: ماکروملکولهای با طیف اندازه ذره ای باریک، شاخه شاخه و در سایز نانو با یک طراحی متقارن می باشند. از یک هسته مرکزی، واحدهای منشعب شده به صورت شاخه درخت و تعدادی گروههای عاملی تشکیل شده اند.
کریستال های مایع: از حاملهای دارویی جالب به شمار می روند. این مواد از لحاظ نظم ملکولی بین حالت جامد و مایع قرار دارند و در نتیجه خصوصیات مایع و جامد را توامان دارا هستند.
نانوپارتیکلها: (شامل نانوسفرها و نانوکپسولها با اندازه ذره ای nm 200-10) به فرم جامد بوده و آمورف یا کریستالی هستند. این حاملها قادرند دارو را جذب و انکپسوله نمایند، و بدین وسیله آن را علیه تخریب آنزیماتیک و شیمیایی محافظت کنند. نانوکپسولها سیستمهای وزیکولی هستند که در آنها دارو در حفره ای قرار می گیرد که اطراف آن با یک غشاء پلیمری احاطه شده است، در حالی که نانوسفرها سیستمهای ماتریکسی هستند که در آنها دارو به صورت فیزیکی و یکنواخت در حامل پراکنده شده است. نانوپارتیکل ها به عنوان حاملهای دارویی هم از پلیمرهای زیست تخریب پذیر و هم از انواع غیر زیست تخریب پذیر ساخته می شوند. نانو ذرات برای هدف رسانی به ارگانها و بافتهای بخصوص، به عنوان حامل DNA در ژن درمانی و پروتئین درمانی از مسیرهای خوراکی بسیار مورد توجه قرار گرفته اند.
هیدروژلها: شبکه های پلیمری سه بعدی هیدروفیل و آبدوست پلیمری می باشند که قادرند بعضا تا چندین برابر حجم و وزن خود آب و مایعات بیولوژیک را جذب کنند.
کونژوگه ها:که شامل کونژوگه کردن پلیمرهای مصنوعی با پلیمرهای بیولوژیک (مانند پروتئینها و پپتیدها) می باشند، یک وسیله کارا و موثر برای بهبود فرایند آزادسازی دارو می باشد. کونژوگه کردن پلیمرهای زیست سازگار مناسب با پپتیدها و پروتئین های بیولوژیک خطر سمیت را در آنها کاهش داده، واکنشهای ایمونوژنیک و آنتی ژنیک را علیه آنها کم می کند، زمان جریان خون را افزایش می دهد و حلالیت را بهبود می بخشد. تغییر و اصلاح پلیمرهای مصنوعی با توالی های الیگوپپتیدی مناسب، به عبارت دیگر، باعث جلوگیری از توزیع رندوم و تصادفی داروها در سراسر بدن بیمار شده و به هدف درمانی به سایت و ارگان مورد نظر کمک می کند. توانایی توالی های پپتیدی کاتیونی به کمپلکس شدن با DNA و متعاقب آن فشردن DNA و نوکلئوتیدها، امیدهای نویدبخشی را برای توسعه حاملهای غیرویروسی DNA در حیطه ژن درمانی به همراه دارد.
به دلیل اینکه اکثر داروها دارای خواص هیدروفوبیک (لیپوفیل) هستند ، بنابراین در غلظتهای زیاد در بافت تمایل به رسوب دادن پیدا میکنند و برای برطرف کردن این اثر میبایستی که همراه آنان مواد جانبی زیادی در فرمولاسیونها به کار روند و لذا سمیتهای بافتی زیادی در این موارد حاصل می شود. برای مقابله با این مشکل، نانو سامانه های نوین دارورسانی زیادی که دارای خواص آبدوستی و یا لیپوفیل باشند طراحی شده است. در برخی از موارد خیلی از داروها سریع تجزیه و به سرعت از اد ر ار دفع میشوند. در این موارد تغییرات فیزیکوشیمیایی می تواند سبب افزایش فراهمی زیستی داروها شود و در نهایت سبب کاهش نیاز به تجویز دارو در اندازههای کمتری شود. مطالعات نشان داده است که انکپسول نمودن مواد داروئی تأثیر زیادی در مهار ک لیرنس دارو ها از بدن میگذارد.
دارورسانی به صورت سیستمیک یا موضعی برای دوره های طولانی مدت از یک تا چند ماه می تواند توسط این سیستمها تحقق یابد. عمده سیستمهای کاشتنی تشکیل شونده در محل از راه تزریقی می توانند با ایجاد یک غلظت ثابت دارو در پلاسما مشابه انفوزیون وریدی عوارض جانبی آن را کم کرده و مخصوصا برای داروهای پروتئینی با اندکس درمانی باریک بسیار مناسب می باشند. از دیدگاه پروسه ساخت، تولید این سیستمها بسیار ساده و آسان می باشد.
این سیستمها به چهار دسته عمده تقسیم بندی می شوند: 1- خمیرهای ترموپلاستیک 2- سیستمهای پلیمری کراس سنیک شونده در محل 3- رسوب پلیمر در محل 4- سیستمهای ژل شونده دمایی
هدف نهایی در توسعه سیستمهای دارورسانی با آزاد سازی کنترل شده توسعه وسایل و ابزارهایی بوده است که توانایی نگهداری و آزاد سازی مواد شیمیایی را در مواقع موردنیاز دارا باشند.
الف) سیمون وب و همکارانش از دانشگاه منچستر در سال 2009 از نانوذرات مغناطیسی برای چسباندن وسیکلهای حاوی مواد رنگی به یکدیگر استفاده نموده و سپس آنها را درون یک هیدروژل جای دادند. وب با استفاده از میدان مغناطیسی وسیکلها را وارد هیدروژل نموده و نشان داد که میتوان با استفاده از یک میدان مغناطیسی متناوب به عنوان فعالکننده، مواد رنگی را از درون آنها رها کرد. بنابر گفته وی این آزمایش نشان میدهد که میتوان از این ژل شبه بافت برای ذخیره سازی داروها و سپس رهایش آنها در محل بیماری، بدون اثرگذاری بر بافتهای اطراف استفاده کرد.
این گروه پژوهشی قبلاً از وسیکلها برای تقلید چسبیدن سلولها به یکدیگر استفاده کردهاند. وب میگوید استفاده از ذرات مغناطیسی و بستر هیدروژلی موجب تحکیم آرایههای به هم چسبیده شده و کنترل آنها را راحتتر میسازد. او میافزاید: «خوشبختانه این ترکیب ماده محکمی ایجاد میکند که میتواند الگودهی شده و در پاسخ به میدان مغناطیسی، مواد شیمیایی زیستی را رها کند».
دیوید اسمیت، پژوهشگر دانشگاه یورک در انگلیس که روی مواد ژلی نانومقیاس کار میکند، میگوید: «بخش زیرکانه این کار روشی است که این پژوهشگران برای ارتباط میان فعال کننده مغناطیسی با وسیکلها استفاده کردهاند. آنها برای این کار از برهمکنشهای غیرکووالانسی بهره بردهاند که به دقت قابل کنترل هستند. وارد کردن یک سیستم رهایش فعال شونده با استفاده از میدان مغناطیسی درون یک هیدروژل، موجب تولید مادهای میشود که میتوان از آن برای دارورسانی استفاده کرد». او میافزاید استفاده از میدان مغناطیسی متناوب برای استفاده بالینی ایدهال است، زیرا اثرات منفی روی بافتهای سالم ایجاد نمیکند.
دانلود سیستم دارورسانی نوین نانو 15 ص