اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مصاحبه با ایوان نیون

اختصاصی از اینو دیدی مصاحبه با ایوان نیون دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 12

 

مصاحبه با ایوان نیون (Ivan Niven):

 

مدرس نامی ریاضیات ایوان نیون ، متولد 25 اکتبر سال 1915در ونکوور کانادا، نظریه اعداد پردازی برجسته است که اساسا در حوزه های تقریب های دیوفانتی و مسایل مربوط به گنگ و متعالی بودن اعداد به کار پرداخته است. به عنوان رئیس انجمن ریاضی آمریکا(Mathematic Association of America)و یکی از اعضای شورای جامعه ریاضی امریکا(American Mathematic society) خدمت کرده است و در سال 1989 جایزه انجمن ریاضی امریکا را برای خدمات برجسته به ریاضیات دریافت کرده است .

 

با توجه به آنچه تا اینجا درباره دیکسون گفته اید، زمانی که مسئله دکترایتان را به شما داد ، حتما برایتان بسیار سخت بوده است.بی تردید در ابتدای کار ، گیر کردید. با این حساب بر روی آن کار کردید؟

هر ابزار و ایده ای را می دانستم و تلفیق آنها را آزمودم.مقالات موجود اثر ریاضی دان هندی اس اس پیلای (S. S. Pillai) را ، که همزمان با دیکسون و به طور مستقل مسئله وارینگ را حل کرده بود ، مطالعه کردم. کار آنها بر مبنای تخمین های تحلیلی آی ام.وینوگرادوف(I. M. Vinogradov) ریاضیدان روسی بود که به مراتب بهتر از استدلال های هاردی لیتلوود (Hardy Littlewood) بودند.من هم طبیعتاً نتایج وینوگرادوف را مرور کردم تا ببینم آیا دیکسون و پیلای از تمام امکانات موجود در نتایج حاصل ، استفاده کرده بودند یا نه پاسخ مثبت بود. پس دیگر چیز جدیدی نمانده بود که دریابم. به هر حال از پس حل مسئله هایی که دیکسون داده بود ، بر آمدم . اجازه بدهید در مورد آنکه چگونه مسائل ریاضی را حل میکنیم ، قدری بیشتر توضیح دهم ، همان طور که می دانید ،در ریاضیات مسئله مهم ، یافتن مسائل مناسب برای حل و فراتر از آن آفرینش نظریه ای جدید است . ژاک آدامار( Jacques Hadamard) در کتابش به نام «روانشناسی ابداع در حوزه ریاضیات » در صدد توضیح این موارد مهم است .آدامار صلاحیت نوشتن در مورد چنینی موضوعی را دارا بود ، چه او و شارل دولا واله پوسین((Charles de la Valleépoussin،نخستین کسانی بودند که –مستقل از هم- قضیه مشهور اعداد اول را ثابت کردند.

 

قضیه اعداد اول:یکی از دستاوردهای بزرگ نظریه اعداد در اواخر قرن نوزدهم ، یافتن برهانی بر این قضیه است که تخمینی از چگونگی توزیع اعداد اول در دنباله اعداد صحیح مثبت را به دست میدهد . مطابق این قضیه ، اگر (x)П تعداد اعداد اول کوچکتر از x باشد ، آنگاه :

 

گاوس این قضیه را حدس زده بود ، ولی درستی آن را اثبات نکرده بود . برای اثبات این قضیه باید ایده های جدیدی عرضه می شدند ، پس کار براستی خلاقانه بود. بسیاری از مقالات ریاضی اقتباس اند ، به این معنا که هیچ ایده جدیدی در آنها معرفی نشده است. قصد من بدگویی از این مقالات نیست ، ایده های شناخته شده را باید به روش های بدیع ، اقتباس و تلفیق کرد و این کار آسانی نیست.

آدامار، مانند هر کس دیگری شرایط لازم و نه کافی برای خلاقیت ریاضی را ارایه میدهد . مثل زیست شناس بزرگ لویی پاستور ، که می گفت شانس به ذهن آماده روی خوش نشان میدهد.

در ضمن، در پایان تحصیلاتم در شیکاگو ، آغاز برخورد با اشخاصی از دانشگاهای دیگر مثل پرینستون بود ، که افتخار می کردند در آنجا مسئله ای به آنان واگذاری نمی شود بلکه آنها باید خود مسائل شان را پیدا می کردند ، خب فکر می کردم این از ما بهتران ،سیستم شیک تر و پیشرفته تری دارند.بعدا که بیشتر و بیشتر با این جماعت به صحبت نشستم ، دریافتم که آنها در واقع مسئله ای کشف نمی کردند.در اکثر موارد ، این مسئله چیزی بود که استاد آن را در کلاس درس (به اصطلاح) پرانده بود . آنها هم مسئله را بر می داشتند و بعد درباره آن با استاد بحث می کردند .از همه اینها گذشته ، یک دانشجو در آن مرحله ، در حدی نیست که در مورد مسئله ای تصمیم بگیرد . می توانید مسئله ای را پیدا کنید ، اما از کجا میدانید که قبلا در نوشته های ریاضی حل نشده است؟

علت حضور استاد هم همین است ، استاد آثار ریاضی را بسیار بسیار خوب می شناسد .در کتاب «جماعت ریاضی»(Mathematical People)، اولگا تاوسکی-تاد(Olga Tauessky Todd) از وین و از اینکه استادش گفت:«خب، ما روی نظریه رده ای میدان کار می کنیم»سخن می گوید نظریه ای که در آن زمان ، تازه در آغاز راه بود. بنابراین هر چه می توانست مطالعه کرد در حالی که چیز زیادی هم برای خواندن وجود نداشت . از آنجا که نمی توانست مسئله ای بیابد ، روز به


دانلود با لینک مستقیم


مصاحبه با ایوان نیون
نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد