پایان نامه کارشناسی ارشد اقتصاد
گرایش برنامه ریزی سیستم های اقتصادی
113 صفحه
چکیده:
هدف از این تحقیق طراحی و استقرار مدل اندازه گیری ریسک اعتباری در نظام بانکی نقش کارامدی در راستای بالا بردن بهره وری بانکها و موسسات مالی در تخصیص بهینه منابع میباشد. در این پژوهش تلاش شده تا کارایی مدلهای لجستیک و شبکه عصبی مصنوعی GMDH برای پیشبینی ریسک اعتباری مشتریان نظام بانکی مورد بررسی قرار گیرد و همچنین مهمترین عوامل موثر بر ریسک اعتباری، شناسایی و مورد بررسی قرار گیرند. اطلاعات مورد استفاده در این پژوهش مربوط به 100 نفر از مشتریان حقوقی یکی از بانکهای کشور می باشد. بنابر اهداف پژوهش متغیرهای مورد استفاده نیز به صورت ترکیبی از مهمترین متغیرهای مالی و غیرمالی می باشد. نتایج مدل لاجیت نشان می دهد که متغیرهای تعداد چک های برگشتی، سابقه فعالیت شرکت نزد بانک، میزان سرمایه شرکت، نسبت گردش مجموعه دارایی، نسبت بدهی به حقوق صاحبان سهام و نسبت حاشیه سود خالص مهمترین متغیرهای موثر بر شناسایی میزان ریسک اعتباری مشتریان می باشد. ولی مدل شبکه عصبی علاوه بر متغیرهای یاد شده در بالا متغیرهایی از قبیل تحصیلات مدیر عامل، ارزش وثیقه به میزان تسهیلات، خالص سرمایه در گردش به دارایی، نسبت حاشیه سود عملیاتی و نسبت بازدهی به دارایی را به عنوان متغیرهای با اثر زیاد بر میزان ریسک اعتباری معرفی می کند. مقایسه کارایی مدل لاجیت و مدل شبکه عصبی نشان می دهد که مدل شبکه عصبی با سه لایه مخفی با کارایی 95 درصد کاراترین مدل برای شناسایی و تعیین میزان ریسک تسهیلات می باشد.
واژه های کلیدی: اعتبارسنجی، شبکه عصبی، ریسک اعتباری، مدل لاجیت
بررسی ریسک اعتباری بانک ها با استفاده از مدل های خطی و غیر خطی (مطالعه موردی بانک اقتصاد نوین)