اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هندسه اقلیدسی و ناقلیدسی

اختصاصی از اینو دیدی هندسه اقلیدسی و ناقلیدسی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 21

 

مقدمه

واژه هندسه عربی شده واژه »اندازه «در فارسی است. در زبان انگلیسی به آن geometry و در زبان فرانسه به آن géométrie میگویند که هردو از γεωμετρία )گئومتریا (در زبان یونانی آمده است. این کلمه از دو کلمه »جئو«ٍ به معنای زمین و »متری« به معنای اندازه گیری تشکیل شده است که به معنای اندازهگیری زمین است.احتمالا بابلیان و مصریان کهن نخستین کسانی بودند که اصول هندسه را کشف کردند. در مصر هر سال رودخانه نیل طغیان میکرد و نواحی اطراف رودخانه را سیل فرا میگرفت. این رویداد تمام علایم مرزی میان املاک را از بین میبرد و لازم میشد دوباره هر کس زمین خود را اندازهگیری و مرزبندی کند. مصریان روش علامتگذاری زمینها با تیرک و طنابرا ابداع کردند. آنها تیرکی را در نقطهای مناسب در زمین فرو میکردند و تیرک دیگری در جایی دیگر نصب میشد و دو تیرک با طنابی که مرز را مشخص میساخت به یکدیگر متصل میشدند. با دو تیرک دیگر زمین محصور شده و محلی برای کشت یا ساختمان سازی مشخص میشد.در آغاز هندسه برپایه دانستههای تجربی پراکندهای در مورد طول و زاویه و مساحت و حجم قرار داشت که برای مساحی و ساختمان و نجوم و برخی صنایع دستی لازم میشد. بعضی از این دانستهها بسیار پیشرفته بودند مثلا هم مصریان و هم بابلیان قضیه فیثاغورث را ۱۵۰۰ سال قبل از فیثاغورث میشناختند.یونانیان دانسته های هندسی را مدون کردند و بر پایهای استدلالی قراردادند. برای آنان هندسه مهمترین دانشها بود و موضوع آن را مفاهیم مجردی میدانستند که اشکال مادی فقط تقریبی از آن مفاهیم مجرد بود. در سال ۶۰۰ قبل از میلاد مسیح، یک آموزگار اهل  ایونیا) که در روزگار ما بخشی از ترکیه بهشمار میرود (به نام تالس، چند گزاره یا قضیه هندسی را به صورت استدلالی ثابت کرد. او آغازگر هندسه ترسیمی بود. فیثاغورث که او نیز اهل ایونیا و احتمالا از شاگردان تالس بود توانست قضیهای را که بهنام او مشهور است اثبات کند. البته او واضع این قضیه نبود.

اما دانشمندی به نام اقلیدس که در اسکندریه زندگی میکرد، هندسه را به صورت یک علم بیان نمود. وی حدود سال ۳۰۰ پیش از میلاد مسیح، تمام نتایج هندسی را که تا آن زمان شناخته بود، گرد آورد و آنها را به طور منظم، در یک مجموعه ۱۳ جلدی قرار داد. این کتابها که اصول هندسه نام داشتند، به مدت ۲ هزار سال در سراسر دنیا برای مطالعه هندسه به کار میرفتند.

براساس این قوانین، هندسه اقلیدسی تکامل یافت. هر چه زمان میگذشت، شاخههای دیگری از هندسه توسط ریاضیدانان مختلف، توسعه مییافت. امروزه در بررسی علم هندسه انواع مختلف این علم را نظیر هندسه تحلیلی و مثلثات، هندسه غیر اقلیدسی و هندسه فضایی مطالعه میکنیم.خدمت بزرگی که یونانیان در پیشرفت ریاضیات انجام دادند این بود که آنان احکام ریاضی را به جای تجربه بر استدلال منطقی استوار کردند. قبل از اقلیدس، فیثاغورث 572-500) ق.م ( و زنون 490) ق.م.( نیز به پیشرفت علم ریاضی خدمت بسیار کرده بودند.در قرن دوم قبل از میلاد ریاضیدانی به نام هیپارک، مثلثات را اختراع کرد. وی نخستین کسی بود که تقسیم بندی بابلیها را برای پیرامون دایره پذیرفت. به این معنی که دایره را به ۳۶۰ درجه و درجه را به ۶۰ دقیقه و دقیقه را به ۶۰ قسمت برابر تقسیم نمود و جدولی براساس شعاع دایره به دست آورد که وترهای بعضی قوسها را به دست میداد و این قدیمیترین جدول مثلثاتی است که تاکنون شناخته شده است.بعد از آن دانشمندان هندی موجب پیشرفت علم ریاضی شدند. در سده پنجم میلادی آپاستامبا، در سده ششم، آریابهاتا، در سده هفتم، براهماگوپتا و در سده نهم، بهاسکارا در پیشرفت علم ریاضی بسیار مؤثر بودند.

کلاس بندی هندسه هنـدسه مقـدماتی به دو شاخه تقسیـم می گردد : -    هنـدسه مسطحه -    هندسه فضایی در هندسه مسطحه ، اشکالی مورد مطالعه قرار میگیرند که فقط دو بعد دارند، هندسه فضایی ، مطالعه اشکال هندسی سه بعدی است. این بخش از هندسه در مورد اشکال سه بعدی چون مکعب ها ،استوانه ها، مخروط ها، کره ها و غیره است. در هندسه مدرن شاخه های زیر مورد مطالعه قرار میگیرند: •    هندسه تحلیلی •    هندسه برداری •    هندسه دیفرانسیل •    هندسه جبری •    هندسه محاسباتی •    هندسه اعداد صحیح •    هندسه اقلیدسی •    هندسه نااقلیدسی •    هندسه تصویری و ناجابجایی

هندسه اقلیدسی علومی که از یونان باستان توسط اندیشمندان اسلامی محافظت و تکمیل شد، از قرون یازدهم میلادی به بعد به اروپا منتقل شد، بیشتر شامل ریاضی و فلسفه ی طبیعی بود. فلسفه ی طبیعی توسط کوپرنیک، برونو، کپلر و گالیله به چالش کشیده شد و از آن میان فیزیک نیوتنی بیرون آمد. چون کلیسا خود را مدافع فلسفه طبیعی یونان می دانست و کنکاش در آن با خطرات زیادی همراه بود، اندیشمندان کنجکاو بیشتر به ریاضیات می پرداختند، زیرا کلیسا نسبت به آن


دانلود با لینک مستقیم


هندسه اقلیدسی و ناقلیدسی

تحقیق درمورد طرح درس سالانه ریاضی درس هندسه ا پایایه دوم دبیرستان

اختصاصی از اینو دیدی تحقیق درمورد طرح درس سالانه ریاضی درس هندسه ا پایایه دوم دبیرستان دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 2

 

به نام خدا

مدیریت آموزش و پرورش ناحیه 2 شهرری

طرح درس سالانه

درس : هندسه (1) پایه : دوم ریاضی و تجربی نیمسال دوم (87 – ۸۶ )

جلسه

تاریخ

عناوین وموضوعات تدریس

صفحات

توضیحات

1

قضیه تالس – نتایج قضیه تالس

حل مسائل 1و2و3 صفحه 81 و82

82 - 77

2

عکس قضیه تالس – حل بقیه

مسائل صفحه 82 و 83

3

مثلث های متشابه

88 - 83

4

ادامه مثلث های متشابه

حل مسائل صفحه 90 و 91 و 92

92 - 89

5

پاره خط های متناسب در

دو مثلث متشابه

و حل مسائل صفحه 96 و 97

97 - 93

6

محیط و مساحت شکل های متشابه

و حل مسائل 104و 105

106 - 97

7

حل باقیمانده مسائل

8

آزمون

9

شکل های فضایی

مکعب و مکعب مستطیل

115 - 107

10

حل مسائل صفحه 116 – منشور و استوانه - اصل کاوالیری

126 - 116

11

حل مسائل صفحه 122 و 127 و128

12

هرم ومخروط و حل مسائل

 صفحه 135

135- 129

13

کره - حل مسائل صفحه 143

143- 136

14

آزمون

توضیحات :

1.       این برنامه به صورت پیشنهادی می باشد . همکاران محترم می توانند با توجه به شرایط کلاس خود اصلاحات لازم را اعمال نمایند .

2.     طول هر ترم4 1 هفته در نظر گرفته شده است .

3.    گروه ریاضی ناحیه 2 ری آماده دریافت نظرات و پیشنهادات همکاران میباشد .


دانلود با لینک مستقیم


تحقیق درمورد طرح درس سالانه ریاضی درس هندسه ا پایایه دوم دبیرستان

تحقیق و بررسی در مورد افلاطون و هندسه

اختصاصی از اینو دیدی تحقیق و بررسی در مورد افلاطون و هندسه دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 19

 

افلاطون بر سردر آکادمی خود نوشت: «هرکس هندسه نمی داند وارد نشود.»

گذشته از این که هدف افلاطون از این گفته چه بود، یا حتی این ماجرا حقیقت است یا افسانه، این نکته بیانگر این حقیقت است که هندسه در دوران قدیم از اهمیت و اعتبار فوق العاده ای برخوردار بود و بیش از هر دانش دیگری مورد احترام بود، حتی یادگیری هندسه را برای آموختن فلسفه لازم می دانستند. شاید یک دلیل این نکته این مطلب باشد که هندسه بیش از هر دانش شناخته شده آن زمان نظری بود و بنابراین می توانست در زمانی که علوم دیگر به بیراهه می رفتند یا دوران طفولیت را طی می کردند، مستقلاً به راه خود ادامه دهد. از طرف دیگر هندسه کاربردی ترین علم زمان بود. قطعاً هندسه در ایجاد بناهای شکوهمند که میراث بشری محسوب می شود، از جمله اهرام شگفت انگیز مصر نقش بسزایی داشته است.تالس را پیشگام هندسه می شناسند، پس از وی نیز فیثاغورث، افلاطون، اقلیدس نیز هرکدام سهم شایان توجهی در گسترش و توسعه این شاخه از دانش ایفا کردند. تاریخ پربار فرهنگ و تمدن ایرانی نیز پر است از نام و چهره مشاهیر بسیار ارزنده ای که در طول چندین سده مشعل دار تحقیقات علمی جهان بودند. آنان با استفاده از دستاوردهای پیشینیان و تکیه بر سعی و تلاش خود، دانش بشری و علی الخصوص هندسه را به مدارج بسیار بالاتری رهنمون ساختند. چهره هایی از جمله خوارزمی، خیام، خواجه نصیر، ابوالوفای بوزجانی، جمشید کاشانی و بسیاری دیگر از جمله نام آورترین ریاضیدانان ایرانی هستند که در تاریخ ریاضیات جهان از مقام شامخ و جایگاه بسیار والایی برخوردارند. آنان توانستند با تشکیل زیج ها و انجام رصدهای دقیق تقویم جدیدی بر اساس سال خورشیدی ابداع کنند. با پایه گذاری قوانین حرکت، حفر قنات و استفاده از چرخ چاه را برای آبیاری کشترازها ممکن ساختند. با توسعه اخترشناسی به نیاز دریانوردان برای یافتن مسیر صحیح کشتی و نیاز مؤمنان برای یافتن جهت درست قبله پاسخ دادند. بدین ترتیب به همت این بزرگان، جواب پرسش هایی که در دوران شکوفایی دانش یونان حتی مطرح نشده بود، به دست آمد. بعدها نیز دانشمندانی نظیر دکارت، فرما، پاسکال، اویلر و گوس به توسعه همین دستاوردها پرداختند، به طوری که امروزه انواع مختلفی از هندسه برای حل انواع گونان مسئله ایجاد و گسترش یافته است. تا جایی که حتی پذیرش شاخه های جدیدی از هندسه همانند هندسه نا اقلیدسی که توسط لباچوفسکی و سایرین ابداع شده بود، برای بزرگترین ریاضیدانان زمان غیرممکن به نظر می آمد.هرچند که امروز ریاضیات بسیار گسترش یافته است اما باید دانست که هندسه هیچگاه اهمیت خود را از دست نداده است و همپای تحول سایر شاخه های دانش بشری، به تبدیل و تحول و نوزایی مدام دست زده است.بدیهی است هنگامی که به پشت سر خود نگاه کرده و تاریخ پرفراز و نشیب ریاضیات را مشاهده می کنیم، خود رادر مقابل اقیانوسی از دانش بشری می یابیم که گردآوری و تدوین عمده ترین دستاوردهای آن، برترین اراده ها را به هماوردی نابرابر می طلبد.اما محمدهاشم رستمی از دبیران با سابقه آموزش و پرورش موفق به انجام این کار سترگ شده است و طی بیش از چهل سال تحقیق دایره المعارف جامعی از هندسه تهیه کرده است که گفته می شود بالغ بر۲۰ جلد خواهد بود و تاکنون ۱۴ جلد آن به چاپ رسیده است. وی در این کتاب عمده ترین و برجسته ترین مفاهیم، قضیه ها، مسئله ها و تعریف ها را همراه با گوشه هایی از تاریخ هندسه و سرگذشت مشاهیر این شاخه تدوین کرده است، تا علاقه مندان به این شاخه از ریاضی با دسترسی به تمام مطالب مربوط به هر مبحث و حل و بررسی آنها به احاطه کامل بر آن مبحث دست یابند و احیاناً خود قضیه ها و مسئله ها را تعمیم داده و یا قضیه ها جدیدی را کشف کرده و مسئله های نویی را حل کنند.گروه علم ضمن آرزوی موفقیت برای این مؤلف، گفت وگویی را با وی ترتیب داده است که در زیر می آید.• آقای رستمی،  در ابتدا مختصری از خودتان بگویید.در سال ۱۳۱۸ در طبس متولد شدم. دیپلم ریاضی را در سال ۱۳۳۸ از دبیرستان ابومسلم مشهد و لیسانس ریاضی را در سال ۱۳۴۱ از دانشسرای عالی تهران دریافت کردم.• از فعالیت های خود در عرصه آموزش ریاضیات هم صحبت کنید.از سال ۱۳۴۱ به تدریس ریاضیات در دبیرستان ها، دانشسرای مقدماتی، مراکز تربیت معلم و دانشگاه پرداختم. از سال ۱۳۵۰ عضو شورای برنامه ریزی و تألیف کتب درسی (شاخه نظری) وزارت آموزش و پرورش هستم و در برنامه ریزی و


دانلود با لینک مستقیم


تحقیق و بررسی در مورد افلاطون و هندسه

هندسه

اختصاصی از اینو دیدی هندسه دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 32

 

مقدمه :

هندسه شاخه از ریاضیات است که اشکال و اندازه ها را مورد سر و کار دارد. هندسه ممکن است به عنوان علم فضا نیز انگاشته شود. همانطور که یک حسابگر مورد سر و کار دارد. با مسائلی را که شامل محاسبه(شمارش)است، هندسه نیز مسائلی را که در برگیرندۀ فضا است توضیح و ربط می دهد. هندسه پایۀ به ما این امکان را می دهد تا خصوصیاتی را مانند مساحت و محیط اشکال دو بعدی و سطوح صاف و حجم های اشکالی سه بعدی را تعیین کنیم.

افراد از فرمول های مشتق شده از هندسه را در زندگی روزمره برای کارهایی مانند مقدار رنگ لازمه برای رنگ آمیزی دیوارهای یک خانه یا برای محاسبۀ مقدار آب یک آکواریوم استفاده می کنند.

متدلوژی (روش شناسی)

هندسه قطعات مستقل ادراکی ساده را برای ایجاد با ساختارهای منطقی پیچنده ترکیب می کند. این قطعات مستقل شامل موارد تعریف نشده، اصطلاحات تعریف شده و قضیه ما می باشند. ترکیب این اجزاء زنجیره هایی از برهان ها را بوجود می آورد که نتایج موسوم به قضیه ها را حمایت (تأیید) می کند.

اصطلاحات تعریف نشده :

بعضی از مفاهیم اصلی در هندسه به صورت مفاهیم ساده تری بیان نشده اند. معروفترین آنها نقطه، خط و صفحه است. این مفاهیم اساسی از تجربیات روزانه بوجود آمده است. بنابراین تجربه از مکانی که یک شیئی است منتهی به ایده ای از یک مکان ثابت و دقیق می شود.

آنچه که اصطلاح "نقطه" به آن اشاره دارد مفهوم شهودی و مبتنی بر درک است. اجسام فیزیکی زیادی مفهوم "نقطه" را ارائه می دهند. از جمله گوشۀ یک قطعه، نوک یک مداد و یا نقطه ای روی یک صفحه کاغذ.

این چیزها مذل، نحوۀ نمایش یا تصویر نقطه نامیده میشود. گرچه موارد فوق تقریباً فقط مفهومی در ذهن را ارائه می دهند. بطور مشابه، یک ردیف از نقطه های موجود در یک رشته محکم کشیده شده، لبۀ یک میز یا میلۀ پرچم که بصورت نامحدودی در دو جهت امتداد یافته اند خط نامیده میشود.

واژۀ "صفحه" یک سطح مسطح را توصیف می کند. مانند کف اطاق، صفحۀ نمایش یا تخته سیاه. اما با این فرض که در همۀ جهات بصورت نامحدودی امتداد یافته است. و این بدین معنی است که صفحه هم مانند یک خط که انتها ندارد، لبه ندارد. سایر اصطلاحات تعریف نشده ارتباط بین نقطه ها، خطوط و صفحات را توضیح می دهد مانند ارتباط بیان شده بوسیلۀ این عبارت نقطه ای که روی یک خط قرار می گیرد."

اصطلاحات تعریف شده :

اصطلاحات تعریف نشده می توانند برای تعریف سایر اصطلاحات ترکیب شوند مثلاً نقاطی در یک خط مستقیم قرار نگرفته اند، همان نقاطی هستند که روی همان خط قرار نمی گیرند. پاره خط بخشی از یک خط است که شامل دو نقطۀ خاص است و همۀ نقطه ها بین آن دو نقطه خاص قرار می گیرد.

در حالیکه (ray) بخشی از یک خط است که شامل نقطۀ خاص موسوم به نقطۀ انتهایی و همۀ نقاطی است که بطور نامحدودی در یک طرف نقطۀ انتهائی امتداد یافته اند.

اصطلاحات تعریف شده می توانند با یکدیگر و با اصطلاحات تعریف نشده به منظور تعریف اصطلاحات بیشتر ترکیب شوند.

به عنوان مثال، یک زاویه ترکیبی از دو خط یا دو پرتو مختلفی است که در یک نقطه پایانی مشترک هستند. همینطور یک مثلث از سه نقطۀ غیر واقع در یک امتداد پاره خطهایی که بین آنها قرار دارد تشکیل شده است.

قضیه ها:

قضیه ها، یا اصل ها، ثابت نشده اند اما فرضیه هایی هستند که پذیرفته شدۀ جهانی هستند. مثلاً "فقط و فقط یک خط وجود دارد که از دو نقطۀ معین می گذرد". سیستم متشکل از یک سری قضیه های نامتناقض اصول کلی راجع به اصطلاحات تعریف نشدۀ نقطه، خط و صفحه را با قضیه های استنباط شده از این اصول کلی را هندسه گویند .

مجموعه های متفاوت قضیه ها کل سیستمهای متفاوت هندسه را تعیین می کنند. اگر قصیه های انتخاب شده بوسیلۀ تجربۀ فضای فیزیکی ارائه شوند، بنابراین بطور منطقی انتظار می رود تا نتایج بدقت با تجربیات مربوط به فضا ارتباط نزدیکی داشته باشد. اما چون هر سری از قضیه ها حتماً باید بر اساس مشاهدۀ ناقص و تقریبی انتخاب شوند بنابراین آنها به احتمال زیاد برای فضای واقعی بطور تقریبی قابل اعمال هستند.

بنابراین تعجب آور نیست که هر هندسه خاصی برای مسائل فضای واقعی غیر کاربردی یا فقط تا حدی کاربردی از کار درآید.

برهان ها:

برهان بطور منطقی از قضیه ها نتیجه گیری میوند. این فرآیند نتیجه گیری و قیاس یک دلیل (ثبات) نامیده میشود. هر مرحله از یک برهان باید بوسیلۀ یکی از قضیه ها یا بوسیلۀ یک


دانلود با لینک مستقیم


هندسه

مقاله هندسه

اختصاصی از اینو دیدی مقاله هندسه دانلود با لینک مستقیم و پر سرعت .

مقاله هندسه


مقاله هندسه

لینک پرداخت و دانلود در "پایین مطلب"

فرمت فایل: word (قابل ویرایش و آماده پرینت)
تعداد صفحات 20

«همانگونه که واژه های زبان، ما را از عقیده دیگران آگاه می کند: نمادهای ریاضی، یعنی نشانه های زبان ریاضی هم، وسیله ای است برای اینکه نظر خود را کامل تر، ساده تر و دقیق تر به دیگران بفهمانیم ومفهوم تازه خود را در برابر دیگران بگذاریم»

لوباچفسکی

مقدمه

هندسه هم مانند حساب، یکی از کهن ترین بخش های دانش ریاضیات است.تاریخ پیدایش آن در ژرفای سده های گذشته است.هندسه در دنیای کهن،بیشتر جنبه کاربردی داشته است و این دوران خود را، که طولانی ترین دوران تکامل آن است، در ایلام، بابل،مصر،چین و در واقع در همه سرزمین های گذرانده است و همه ملت ها در ارتباط بااندازه گیری، به ویژه اندازه گیری زمین های کشاورزی، در ساختن مفهوم های هندسی دخالت داشته اند.


دانلود با لینک مستقیم


مقاله هندسه