اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

کد متلب رسم کرل (Curl) تابع

اختصاصی از اینو دیدی کد متلب رسم کرل (Curl) تابع دانلود با لینک مستقیم و پر سرعت .

کد متلب رسم کرل (Curl) تابع


کد متلب رسم کرل (Curl) تابع

این کد کرل (Curl) تابع و همچنین خود تابع را در نرم افزار متلب رسم می کند.

خط های برنامه حاوی توضیحات لازم به صورت کامنت هستند.

برای مشاهده نتایج کافیست کد را در نرم افزار متلب Run نمایید.

 


دانلود با لینک مستقیم


کد متلب رسم کرل (Curl) تابع

کد سی محاسبه انتگرال تابع به روش رامبرگ

اختصاصی از اینو دیدی کد سی محاسبه انتگرال تابع به روش رامبرگ دانلود با لینک مستقیم و پر سرعت .

کد سی محاسبه انتگرال تابع به روش رامبرگ


کد سی محاسبه انتگرال تابع به روش رامبرگ

کد سی محاسبه انتگرال تابع به روش رامبرگ (ROMBERG)

طریقه عملکرد برنامه به این صورت است که برنامه ابتدا و انتهای بازه انتگرال گیری و سپس تعداد ردیف ها را از کاربر دریافت می کند و سپس ردیف های نتیجه انتگرال را به صورت ردیف چاپ می کند.

خط های برنامه حاوی توضیحات لازم به صورت کامنت هستند.

برای مشاهده نتایج کافیست کد را کامپایل و سپس در نرم افزار Run نمایید.


دانلود با لینک مستقیم


کد سی محاسبه انتگرال تابع به روش رامبرگ

تحقیق در مورد طول کمان، مساحت و تابع Arcsine

اختصاصی از اینو دیدی تحقیق در مورد طول کمان، مساحت و تابع Arcsine دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد طول کمان، مساحت و تابع Arcsine


تحقیق در مورد طول کمان، مساحت و تابع Arcsine

لینک پرداخت و دانلود *پایین صفحه*

 

فرمت فایل : Word(قابل ویرایش و آماده پرینت)

 

تعداد صفحه : 21

 

فهرست مطالب:

 

طول کمان، مساحت و تابع Arcsine

مساحت و arcsine

گویا کردن arcsine

فرمول جمع sine الوئر

مراجع :

 

طول کمان، مساحت و تابع Arcsine

-مجله ریاضیات ، مارس 1983، جلد 56، شماره 2 صفحات 110-106

-توصیف هندسی مقاله ها جبری یک محرک اصلی برای حساب دیفرانسیل وانتگرال مقدماتی ایجادمی کند.

عناوین حساب دیفرانسیل وانتگرال بوسیله هندسه تحلیلی در بسیاری از متن های مقدمه

وابستگی به شروع های عکس دار در گسترش انتگرال معین و مشقق اشاره می کند.

در حالی که فاکتورهای هندسی ، بسیاری از نمادهای توابع مثلثاتی ومشتق های آنها را کنترل کننده یک راه حل تقریبا جامع برای روشهای جبری را معرفی و مطالعه توابع مثلثاتی معکوس وجود دارد این نتکه نشان می دهد چطور مفاهیم جبری در تعاریف انتگرال معین، مثلثاتی ومشتق های آنها در بحث تطابق توابع معکوس ممکن است ادامه پیدا کند. مرجع در رابطه با این مفاهیم جبری نسبت به توسعه نظریه بیضی و روش الوار(Eluer) در کشف قضیه های ضمیمه جبری را سینوسهای دایره ای هذلولی و lemniscare ایجاد خواهد شد.

حساب دیفرانسیل وانتگرال نمونه در مقابل arcsine بعنوان طول کمان با در نظر گرفتن ]1[ و ] 3[ بعنوان نمونه هایمان، یادآوری می کنیم که در کتاب جدید درسی استاندارد، بعد از آنکه انتگرال معین تعریف شده است . کاربردهایی شامل مساحت بین دو منحنی وفرمول طول کمان می شود از آنجائیکه تکنیک های انتگرال گیری کمی در دسترس می باشد. مشکلات طول کمان به کمان های باریک y=f(x)  تا حدی که انتگرال  بطور خاصی ساده باشد وگاهگاهی توجیه یک نویسنده برای نبود کاربردهای مناسب پیشنهادی شود.(ببنید ]3[ صفحه 429)

بعد از مقوله توابع مثلثاتی مروری از اندازه گیری رادیان بطوریکه طول کمان از نقطه (0و1) روی دایره واحد  اندازه گیری می شود. Cosine , sine یک عدد حقیقی  بعنوان مختصات sineو  cos یک عدد حقیقی  بعنوان مختصات نقطه (x,y) روی دایره واحد  رادیان های  از (0و1) (شکل 1 را ببنید) سپس خصوصیات sine و cos از تشابهات دایره و دیگر توابع مثلثاتی که در اصطلاح های cosin ,sine تعریف می شود ناشی می شود. مشتق های cosine ,sine بعنوان نتایج 1(sin)/= ایجادمی شود. این حد از طریق برابر گرفتن طول کمان در امتداد لبه دایره واحد با مساحت بخشی که بوسیله کمان ( در شکل 2و 2= مساحت AOB) وسپس قراردادن این مساحت مابین دو ناحیه مثلث شکل برقرار می گردد.


دانلود با لینک مستقیم


تحقیق در مورد طول کمان، مساحت و تابع Arcsine

تحقیق در مورد تابع و لگاریتم در ریاضیات

اختصاصی از اینو دیدی تحقیق در مورد تابع و لگاریتم در ریاضیات دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد تابع و لگاریتم در ریاضیات


تحقیق در مورد تابع و لگاریتم در ریاضیات

لینک پرداخت و دانلود *پایین صفحه*

 

فرمت فایل : Word(قابل ویرایش و آماده پرینت)

 

تعداد صفحه : 14

 

فهرست مطالب:

 

تاریخچه مختصر ریاضیات

تاریخچه و پیشینه تابع

ریاضی - لگاریتم طبیعی

 

تاریخچه مختصر ریاضیات

اولین مطلب :

تاریخ را معمولا غربیها نوشته اند، و تا آنجا که توانسته اند آن را به نفع خود مصادره کرده اند. بنابراین نمی توان انتظار داشت نوادگان اروپائیانی
که سیاهان آفریقا را در حد یک حیوان پائین آورده و آنها را به بردگی کشانده اند، آنها را انسانهائی با سوابق کهن تاریخی و علمی معرفی نمایند.
البته این کلام مصداق کلی ندارد، و فقط اشاره به جریان حاکم در تاریخنگاری غربیها دارد.
قبل از تاریخ
انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجه‌هایش را می‌داند انجام می‌داد. اما بزودی مجبور شد وسیلة شمارش دقیقتری بوجود آورد. لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده می‌باشد قدیمی‌ترین دستگاه شماری است که آثاری از آن در کهن‌ترین مدارک موجود یعنی نوشته‌های سومری مشاهده می‌شود.
سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بین‌النهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند.
در نخستین قرون تاریخ چهار ریاضی‌دان مشهور در این کشور وجود داشت که عبارت بودند از:
آپاستامبا(قرن پنجم)، آریاب هاتا (قرن ششم)، براهماگوپتا (قرن هفتم) و بهاسکارا (قرن نهم) که در کتب ایشان بخصوص قواعد تناسب ساده و ربح مرکب مشاهده می‌شود. محاسبات در این کتابها جنبه شاعرانه داشت و حتی نام علم حسابرا (لیلاواتی) گذارده بودندکه معنی دلبری و افسونگری دارد. با شروع قرن دهم پیشرفت کشفیات ریاضی در هندوستاننیز متوقف گردید و مشعل فروزان علم بدست اعراب افتاد.
در سال 622م که حضرت محمدصلی الله علیه و آله وسلم از مکه هجرت فرمود در واقع آغاز شگفتی تمدن اسلام بود. اعراب که جنبش شدید خود را از سدة هفتم آغاز کرده بودند پس از رحلت پیغمبر اسلام در 632 به توسعه سرزمینهای خود پرداختند و بزودی تمام ممالک آفریقائی ساحل مدیترانه را متصرف شدند.
و این توسعه‌طلبی ایشان را در اروپاتا اسپانیاو در آسیاتا هندوستانکشانید و در نتیجه تماس با کشورهای مغلوب که مردم آنها غالباً دارای تمدن عالی بودند ذوق شدیدی به آموختن در ایشان بوجود آمد. لذا با سهولت و چالاکی فرهنگ ممالک دست نشانده را پذیرفتند.
در زمان مامون خلیفه عباسی تمدن اسلام بحد اعتلای خود رسید بطوری که از اواسط قرن هشتم تا اواخر قرن یازدهم زبان عربی علمی بین‌المللی گردید.
از ریاضی‌دانان بزرگ اسلامی یکی خوارزمی می‌باشد که در سال 820 به هنگام خلافت مأمون در بغدادکتاب مشهورالجبر و المقابله را نگاشت.وی در این کتاب بدون آنکه از حروف و علامات استفاده کند، حل معادلة درجه اول را بدو طریقی که ما امروزه جمع جبری جمل و نقل آنها از یکطرف بطرف دیگر می‌نامیم، انجام داده است دیگر ابوالوفا (998_ 938) است که جداول مثلثاتی ذیقیمتی پدید آورده و بالاخره محمدبن هیثم(1039_ 965) معروف به الحسن را باید نام بردکه صاحب تألیفات بسیاری در ریاضیات و نجوم است.قرون وسطی از قرن پنجم تا قرن دوازدهم یکی از دردناکترین ادوار تاریخی اروپاست. عامة مردم در منتهای فلاکت و بدبختی بسر می‌بردند. جنگهای متوالی و قتل و غارت و از طرف دیگر نفوذ کلیسا آنچنان فکر مردم را به خود مشغول داشته بود که هیچ کس فرصت آنرا نمی‌یافت که در فکر علم باشد، آری مدت هفت قرن تمام اروپا محکوم به این بود که بار گران جهل و نادانی را بر دوش کشد. در اواخر قرن دهم ژربر فرانسوی کوشید تا به کمک مطالبی که در چند مدرسه از کلیساهای بزرگ اروپا آموخته بود پیشرفت جدیدی به علوم مقدماتی بدهد. وی دستگاه مخصوص را که برای محاسبه بکار می‌رفت اصلاح کرد. این دستگاه همان چرتکه بود.برجسته‌ترین نامهائی که در این دوره ملاحظه می‌نمائیم، در مرحله اول لئوناردیوناکسی (1220_1170) ریاضی‌دان ایتالیائی است. وی که مدتهادر مشرق زمین اقامت کرده بود، آثار برخی از دانشمندان اسلامی را از آنجا به ارمغان آورد. همچنین برای اولین بار علم جبررا در هندسهمورد استفاده قرار داد. دیگر نیکلاارسم فرانسوی می‌باشد که باید او را پیشقدم هندسه تحلیلیدانست. وی اولین کسی است که نه تنها مجذور و مکعب و توانهای چهارم و پنجم اعدادرا در نظر گرفت بلکه اعدادرا بقوای کسری از قبیل یک دوم و دو سوم و یک هفتم و غیره نیز رسانید و به عبارت دیگر وانهای کسری اعدادرا بدست آورد.
تاریخچه و پیشینه تابع

«تابع»، به عنوان تعریفی در ریاضیات، توسط گاتفرید لایبنیز در سال 1694، با هدف توصیف یک کمیت در رابطه با یک منحنی به وجود آمد، مانند شیب یک نمودار در یک نقطه خاص. امروزه به توابعی که توسط لایبنیز تعریف شدند، توابع مشتق‌پذیر می‌گوییم، اغلب افراد این توابع در هنگام آموختن ریاضی با این گونه توابع برمی خورند. در این گونه توابع افراد می‌توانند در مورد حد و مشتق صحبت کنند. چنین توابعی پایه حسابان را می‌سازند.


دانلود با لینک مستقیم


تحقیق در مورد تابع و لگاریتم در ریاضیات