اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اینو دیدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درباره انالیز المان محدود سه بعدی روی تقابل و برهم کنش خاک شمع دسته شمعی غیر فعال 10 ص

اختصاصی از اینو دیدی تحقیق درباره انالیز المان محدود سه بعدی روی تقابل و برهم کنش خاک شمع دسته شمعی غیر فعال 10 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 11

 

انالیز المان محدود سه بعدی روی تقابل و برهم کنش خاک - شمع دسته شمعی غیر فعال:

چکیده: تقابل و بر هم کنش بین شمع و خاک نرم دسته شمعی غیر فعال در معرض خاک همراه با مدل المانی محدود سه بعدی با استفاده از نرم افزارAnsys آنالیز شد. خاک مطابق با معیار محصول Drucker-pragey در آنالیز فرض شد که الساستو پلاستیک می شود. جابجایی زیاد خاک در نظر گرفته شد و عناصر تمامی برای ارزیابی تقابل بین شمع و خاک استفده شد. تاثیرات عمق خاک لایه و شمار شمع ها روی فشار جانبی شمع جستجو می شد و توزیعات فشار جانبی روی گره شمعی ( 1* 2 ) و روی گروه شمعی (2*2 ) مقایسه شد. نتایج نشان می دهد که سریار ( بارزنده ) مجاور ممکن است منجر با حرکات برجسته ی جانبی خاک نرم و فشار قابل ملاحظه روی شمع شود. فشار عمل کننده روی ردیفی، نزدیک به بارزنده نسبت با ردیف های دیگر بیشتر و بالاتر می باشد ( به سبب مانع و تاثیرات طاق سازی در دسته ی شمع ها ). بار غیر فعال و توزیعش می بایست در طرح شمع های غیر فعال در نظر گرفته میشود. کلمات کلیدی: تقابل و بر هم کنش خاک- شمع، دسته شمعی غیر فعال؛ خاک نرم، فشار جانبی؛ تغییر شکل فیزیکی در ساختمان؛ انالیز المان محدود سه بعدی.

مقدمه

2-اکثریت شمع ها برای نگهداشتن بارهای فعال، طراحی می شود یعنی بارهای رو ساختار مستقیمأ توسط کاهک با فنداسیون شمع انتقال داده می شود. با وجود این، در خیلی موارد، بارها برای تحمل بارهای غیر فعال، که توسط تغییر شکل فیزیکی و حرکت خاک اطراف شمع ها به سبب وزن خاک و بار اضافی ایجاد می شود، طراحینمی شوند. این بارهای غیر فعال منجر به گسیختگی یا اسیب ساختاری ممکن است بشود. مثال این موارد شاملشمع های نگهدارنده ی تکیه گاههای پلی مجاور به خاکریز، فنداسیون شمع موجود در مجاور شمع کوبی، عملیات خاک برداری و تونل زنی و فونداسیون شمع در شیب های متحرک می شود. چندین روش تجربی و عددی برای آانالیز واکنش شمع منفرد و دسته شمع در معرض بارگذاری جانبی حرکات افقی خاک، پیشنهاد شده است. یک بررسی و مطالعه جامع روی این روش ها توسط Stewart و همکاران انجام شده است. در بیشتر روش های عددی که پیشنهاد شده است از روش المان محدود یا روش تفاضل محدود استفاده شده است. برای دسته های شمعی روش المان محدود تغییر شکل نسبی پلان توسط STEWART و همکاران پذیرفته میشد. در مطالعه ای توسط STERWART و همکاران، شمع ها توسط دیوارهای سپر فولادی فعال نشان داده شد. فرض شد که رفتار سیستم دیواری سپر فولادی وابسته به ارتباط پیش تعیین شده بین فشار و جایگزینی خاک می باشد و تقابل شمع- خاک مدل سازی شد. در یک مطالعه بر و اسپرینگ من از روش المان محدود سه بعدی استفاده کردند که در ان سرند درشت به سمت گنجایش محاسباتی محدود در آن زمان استفاده شد و توزیع تنش تمامی خاک در اطراف شمع ها مورد جستجو قرار نگرفت در حقیقت این نوع تقابل در بردارنده ی عدم خطیت های نظیر انعطاف پذیذی و شکل پذیری خاک، جابجایی زیاد و تماس شمع- خاک می باشد. فاکتورهای تاثیر کننده ی عدم خطیت شامل ویژگیها و عمق لایه خاکی نرم، قطر، شمار و فواصل شمع ها و محدودیت ناشی از ساختار بالایی می شود. تا به امروز، مطالعات محدودی روی این فاکتورهای تاثیر گذار یافته شده است. در این مقاله،توزیع تنش تمامی خاک در اطراف ستون ها و فشار جانبی به دست اورده شد، تغییر شکل های فیزیکی دسته های شمع در ردیف های مختلف بررسی شد و فشارهای جانبی روی دسته شمعی (1*2 ) و دسته ی شمعی ( 2*2 ) مقایسه شد.

مدل تعلیلی:

مشکل اصلی یک دسته شمعی در معرض حرکت خاک در شکل نشان داده می شود که در ان h1 عمق لایه خاک نرم، h2 عمق چینه سفت تر و L طول تعبیه شده کل شمع ها می باشد. در واقع هر دوی حرکات جانبی خاک و حرکات عمودی همیشه بطور همزمان اتفاق می افتد. به منظور ساده کردن مشکل، تنها حرکت جانبی خاک ودر این خلد انالیز شده. در انالیز شمع به عنوان مصالح ارتجاعی مدل سازی شد، در حالیکه فرض میشد خاک مطابق بر معیار محصول Drucker-prage ارتجاعی- انعطاف پذیر می باشد.عناصر تمامی سطحی- سطحی برای ارزیابی تقابل بین شمع و خاک استفاده شد.سطح شمع به عنوان مسطح هدف و سطح خاکی برخورد کننده با شمع با عنوان سطح تماسی تثبیت شد. این دو سطح با همدیگرف زوج اتصال را به وجود اوردند. پردازش مشکل و مسئله سه بعدی توسط نرم افزار ANSYS در یک ایستگاه کار6 کامپیوتری با o انجام شد. تنش های تماسی زمان کار بر روی شمع عمل کننده می باشد، در شکل 2 نشان داده می شود.

 

 

با طرح تنش های تماسی نرمال روی محور X ، نیروی برایند در هر واحد طول (F ) در ان جهت، محاسبه شد. بنابراین فشار جانبی میانگین روی شمع، p=Fld می باشد ( همان طوریکه در شکل 3 شرح داده شده است )

 

 


دانلود با لینک مستقیم


تحقیق درباره انالیز المان محدود سه بعدی روی تقابل و برهم کنش خاک شمع دسته شمعی غیر فعال 10 ص

مقاله درباره نقش خازنها به عنوان المان های الکتریکی

اختصاصی از اینو دیدی مقاله درباره نقش خازنها به عنوان المان های الکتریکی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 17

 

نقش خازنها به عنوان المان های الکتریکی و الکترونیکی کارآمد در صنایع مربوط به تولید و انتقال و توضیع امروزی غیر قابل انکار است بگونه ای که دیگر هرگز نمی توان چنین صنایعی را بدون وجود خازنهای نیرو متصور شد.از این رو شناخت کامل خازنها و عوامل تاثیر گذار برآنها و حفظ و نگهداری و نظارت دقیق بر آنها ، برای افزایش طول عمر خازن ها و کار کرد بهینه آنها امری است الزامی و اجتناب ناپذیر.

کلید واژه- خازن قدرت ، فرکانس ، هارمونیک ها.

مقدمهدرسالهای اولیه هارمونیکها در صنایع چندان رایج نبودند.به خاطر مصرف کننده های خطی متعادل. مانند : موتورهای القایی سه فاز،گرم کنندها وروشن کننده های ملتهب شونده تا درجه سفیدی و ..... این بارهای خطی جریان سینوسی ای در فرکانسی برابر با فرکانس ولتاژ می کشند. بنابراین با این تجهیزات اداره کل سیستم نسبتا با سلامتی بیشتری همراه بود. ولی پیشرفت سریع در الکترونیک صنعتی در کاربری صنعتی سبب بوجود آمدن بارهای غیر خطی صنعتی شد. در ساده ترین حالت ، بارهای غیرخطی شکل موج بار غیر سینوسی از شکل موج ولتاژ سینوسی رسم می کنند (شکل موج جریان غیر سینوسی).

پدیدآورنده های اصلی بارهای غیر خطی درایوهای AC / DC ، نرم راه اندازها ، یکسوسازهای 6 / 12 فاز و ... می باشند. بارهای غیرخطی شکل موج جریان را تخریب می کنند. در عوض این شکل موج جریان شکل موج ولتاژ را تخریب می نماید. بنابراین سامانه به سمت تخریب شکل موج  در هر دوی ولتاژ و جریان می شود. در این مقاله سعی شده است تا بزبانی هرچه ساده تر توضیحی در مورد نحوه عملکرد هارمونیک ها و راه کاری برای دوری از تاثیر گذاری آنها بر خازنها ی نیرو ارائه شود.

اساس هارمونیک ها :

اصولا هارمونیک ها آلوده سازی شکل موج را در اشکال سینوسی آنها نشان می دهند. ولی فقط در مضارب فرکانس اصلی . تخریب شکل موج را می توان در فرکانس های مختلف (مضارب فرکانس اصلی) بعنوان یک نوسان دوره ای بوسیله آنالیز فوریه تجزیه و تحلیل کرد. در حال حاضر هارمونیکهای فرد و زوج و مرتبه 3 در اندازه های مختلف ضرایب فرکانس های مختلف در سامانه های الکتریکی موجودند که مستقیما تجهیزات سامانه الکتریکی را متاثر می سازند. در معنایی وسیعتر هارمونیکهای زوج و مرتبه 3 هریک تلاش می کنند که دیگری را خنثی نمایند. ولی در مدت زمانی که بار نا متعادل است این هارمونیک های زوج و مرتبه 3 منجر به اضافه بار در نول و اتلاف انرژی شدید می شوند. با تمام احوال هارمونیک های فرد اول مانند هارمونیک پنجم ، هفتم ، یازدهم ، سیزدهم و .... عملکرد این تجهیزات الکتریکی را تحت تاثیر قرار می دهند. برای فهم بهتر تاثیر هارمونیک ها ، شکل زیر تاثیر تخریب هارمونیک پنجم بر شکل موج سینوسی را نشان می دهد :

 

 

 

هارمونیک های ولتاژ و جریان تاثیرات متفاوتی بر تجهیزات الکتریکی دارند. ولی عموما بیشتر تجهیزات الکتریکی به هارمونیکهای ولتاژ بسیار حساس اند. تجهیزات اصلی نیرو مانند موتورها، خازن ها و غیره بوسیله هارمونیکهای ولتاژ متاثر می شوند. به طور عمده هارمونیکهای جریان موجب تداخل مغناطیسی (Magnetic Interfrence) و همچنین موجب افزایش اتلاف در شبکه های توزیع می شوند. هارمونیکهای جریان وابسته به بار اند ، در حالی که سطح هارمونیکهای ولتاژ به پایداری سامانه تغذیه و هارمونیکهای بار (هارمونیکهای جریان) بستگی دارد. عموما هارمونیک های ولتاژ از هارمونیک های جریان کمتر خواهند بود.    

 

تشدید:

اساسا تشدید سلفی – خازنی در همه انواع بارها مشاهده می شود. ولی اگر هارمونیک ها در شبکه توضیع شایع نباشند تاثیر تشدید فرونشانده می شود.

در هر ترکیب سلفی – خازنی چه در حالت سری و چه در حالت موازی ، در فرکانسی خاص تشدید رخ می دهد که این فرکانس خاص فرکانس تشدید نامیده می شود. فرکانس تشدید فرکانسی است که در آن رآکتنس خازنی (Xc) و رآکتنس القایی (XL) برابر هستند.

برای ترکیبی مثالی برای بار صنعتی که شامل اندوکتانس بار و یا رآکتنس ترانسفورماتور که بعنوان XL عمل می کند و رآکتنس خازن تصحیح ضریب توان که بصورت Xc خودنمایی می کند فرکانس تشدیدی برابر با LC خواهیم داشت . رآکتنس خازنی متناسب با فرکانس کاهش می یابد (توجه : Xc با فرکانس نسبت عکس دارد). در حای که رآکتنس القایی متناسب با آن افزایش می یابد (توجه

: XL با فرکانس نسبت مستقیم دارد).این فرکانس تشدید به سبب متغیر بودن الگوی بار متغیر خواهد بود. این مساله برای ظرفیت خازنی ثابت کل برای اصلاح ضریب توان پیچیده تر است. برای درک صحیح این پدیده لازم است دو نوع وضعیت تشدید شامل


دانلود با لینک مستقیم


مقاله درباره نقش خازنها به عنوان المان های الکتریکی

تحقیق در مورد انالیز المان محدود سه بعدی روی تقابل و برهم کنش خاک

اختصاصی از اینو دیدی تحقیق در مورد انالیز المان محدود سه بعدی روی تقابل و برهم کنش خاک دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد انالیز المان محدود سه بعدی روی تقابل و برهم کنش خاک


 تحقیق در مورد انالیز المان محدود سه بعدی روی تقابل و برهم کنش خاک

فرمت فایل: word (قابل ویرایش) تعداد صفحات :  10   صفحه

 

 

 

  1. مقدمه

2-اکثریت شمع ها برای نگهداشتن بارهای فعال، طراحی می شود یعنی بارهای رو ساختار مستقیمأ توسط کاهک با فنداسیون شمع انتقال داده می شود. با وجود این، در خیلی موارد، بارها برای تحمل بارهای غیر فعال، که توسط تغییر شکل فیزیکی و حرکت خاک اطراف شمع ها به سبب وزن خاک و بار اضافی ایجاد می شود، طراحینمی شوند. این بارهای غیر فعال منجر به گسیختگی یا اسیب ساختاری ممکن است بشود. مثال این موارد شاملشمع های نگهدارنده ی تکیه گاههای پلی مجاور به خاکریز، فنداسیون شمع موجود در مجاور شمع کوبی، عملیات خاک برداری و تونل زنی و فونداسیون شمع در شیب های متحرک می شود. چندین روش تجربی و عددی برای آانالیز واکنش شمع منفرد و دسته شمع در معرض بارگذاری جانبی حرکات افقی خاک، پیشنهاد شده است. یک بررسی و مطالعه جامع روی این روش ها توسط Stewart و همکاران انجام شده است. در بیشتر روش های عددی که پیشنهاد شده است از روش المان محدود یا روش تفاضل محدود استفاده شده است. برای دسته های شمعی روش المان محدود تغییر شکل نسبی پلان توسط STEWART و همکاران پذیرفته میشد. در مطالعه ای توسط STERWART و همکاران، شمع ها توسط دیوارهای سپر فولادی فعال نشان داده شد. فرض شد که رفتار سیستم دیواری سپر فولادی وابسته به ارتباط پیش تعیین شده بین فشار و جایگزینی خاک می باشد و تقابل شمع- خاک مدل سازی شد. در یک مطالعه بر و اسپرینگ من از روش المان محدود سه بعدی استفاده کردند که در ان سرند درشت به سمت گنجایش محاسباتی محدود در آن زمان استفاده شد و توزیع تنش تمامی خاک در اطراف شمع ها مورد جستجو قرار نگرفت در حقیقت این نوع تقابل در بردارنده ی عدم خطیت های نظیر انعطاف پذیذی و شکل پذیری خاک، جابجایی زیاد و تماس شمع- خاک می باشد. فاکتورهای تاثیر کننده ی عدم خطیت شامل ویژگیها و عمق لایه خاکی نرم، قطر، شمار و فواصل شمع ها و محدودیت ناشی از ساختار بالایی می شود. تا به امروز، مطالعات محدودی روی این فاکتورهای تاثیر گذار یافته شده است. در این مقاله،توزیع تنش تمامی خاک در اطراف ستون ها و فشار جانبی به دست اورده شد، تغییر شکل های فیزیکی دسته های شمع در ردیف های مختلف بررسی شد و فشارهای جانبی روی دسته شمعی (1*2 ) و دسته ی شمعی ( 2*2 ) مقایسه شد.


دانلود با لینک مستقیم


تحقیق در مورد انالیز المان محدود سه بعدی روی تقابل و برهم کنش خاک

مقاله روش المان محدود در طراحی قالب های فلزی

اختصاصی از اینو دیدی مقاله روش المان محدود در طراحی قالب های فلزی دانلود با لینک مستقیم و پر سرعت .

مقاله روش المان محدود در طراحی قالب های فلزی


مقاله روش المان محدود در طراحی قالب های فلزی

این محصول در قالب ورد و قابل ویرایش در 44 صفحه می باشد.

 کشش عمیق:

کشش عمیق از مهمترین فرایندهای شکل دادن ورق است که به طور وسیعی در تغییر شکل ورقهای فلزی و تبدیل آن به قطعات تو خالی به کار می‌رود. در این فرایند تغییر ضخامت ورق بسیار اندک است، به طوری که معمولاً‌سطح قطعه کشیده شده تقریباً با سطح ورق اولیه مطابقت دارد. اساساً فرآیند شکل دادن که برای تغییر ورق‌ها به کار می‌رود با فرایندهای شکل دادن حجیم متفاوت است. در فرایندهای شکل دادن ورق معمولاً حالت کشش غالب است. در صورتی که در فرایندهای شکل دادن حجیم عمدتاً حالت فشاری غالب می‌باشد. کشش عمیق در صنعت معمولاً برای تولید قطعاتی از قبیل انواع ظروف فلزی، مخزنهای تحت فشار یا خلاء بعضی از قطعات یدکی اتومبیل و هواپیما، پوسته فشنگ و گلوله، قوطی‌های کنسرو و نوشابه، به کار می‌رود.

فرایند کشش عمیق بااستفاده از دستگاهی که شامل یک سنبة فشار، یک قالب مدور و یک نگهدارندة ورق است، انجام می‌گیرد، شکل (40 ) نیروی لازم برای این تغییر شکل از طریق مکانیکی یا هیدرویکی تأمین می‌شود. با توجه به اینکه در فرایند تغییر شکل، سطح ورق  ( اغلب ورقهای نازک تا حداکثر حدود mm3 ضخامت ) تحت تأثیر تنش کششی و در امتداد عمود بر آن تنش فشاری قرار می‌گیرد، لذا این روش شکل دادن جزو روشهای کشش ـ فشار محسوب می‌شود.

اصول اساسی در کشش عمیق:

از بین روشهای مختلف شکل دادن ورقها ابتدا فرآیند کشش عمیق را برای ساده‌ترین حالت آن،یعنی حالتی که در آن قطعه ورق مدور اولیه با قطر  به قطعة توخالی استوانه‌ای شکل کشیده می‌شود، مورد بررسی قرار می‌دهیم. در حین فرایند تغییر شک، یعنی هنگامی که سنبه با سرعت یکنواختی به سمت پایین حرکت می‌کند ورق با انجام تغییر شکل پلاستیکی در لبه ( قسمت بین قالب و نگهدارنده) به داخل منفذ قالب کشیده شده و از قطر اولیه آن به طور پیوسته کاسته می‌شود، شکل ( 40 ) در این فریاند قسمتی از ورق که در زیر کف سنبه قرار گرفته به ندرت در تغییر شکل شرکت می‌کند و ضخامت اولیه آن  ثابت باقی می‌ماند. برای جلوگیری از چین و چروک خوردگی لبة ورق استفاده از نگهدارنده در حین فرایند تغییر شکل لازم است. اما به دلیل اینکه نیروی نگهدارنده ( FN  )  به دلیل وجود اصطکاک بین نگهدارنده و روق بر تغییر شکل تأثیر می‌گذارد، لذا ضمن کمی روانکاری، لازم است با استفاده از تجهیزات مکانیکی یا بادی در حین فرایند تغییر شکل، تطابق الاستیکی برقرار باشد.  ابعاد و هندسة قطعه اولیه به شکل و اندازة قطعة نهایی بستگی دارد. برای قطعات تو خالی استوانه‌ای شکل، قطعة مدور اولیه به راحتی می‌تواند از رابطة حجم ثابت محاسبه شود.

 

محاسبة نیرو در فرایند کشش عمیق :

در کشش عمیق نیروی لازم برای تغییر شکل به طور غیر مستقیم به منطقة تغییر شکل اعمال می‌شود. منطقة تغییر شکل در لبة ورق، قسمت بین نگهدارنده و قالب است و نیروی سنبه از طریق کف و دیوارة قطعه در حال کشش به لبه انتقال می‌یابد. به این ترتیب در حین کشش در دیوارة قطعه و لبه‌های انتقالی خمیده شده تنشهای کششی ظاهر می‌شود که می‌تواند به تضعیف دیواره و نهایتاً به ایجاد ترک در این مواضع منجر شود. شکل ( 41 ) قسمتی از قطعه را در حین فرایند کشش نشان می‌دهد. در حین شکل دهی، به هر جزء کوچکی در منطقة تغییر شکل، تنشهای کششی در امتداد شعاع  و تنشهای فشاری در امتداد محیط  اعمال می‌شود. چنانچه فرایند بدون نگهدارنده انجام گیرد، در لبة ورق چروک خوردگی ایجاد می‌شود که دلیل آن ظاهر شدن تنشهای فشاری محیطی است.

با به کار بردن نگهدارنده و ایجاد تنشهای فشاری در امتداد محور Z می‌توان از چروک خوردگی لبة ورق جلوگیری کرد. از طرفی وجود نیروی نگهدارنده FN  سبب ظاهر شدن اصطکاک  در سطح تماس ورق و نگهدارنده و همچنین بین ورق و قالب می‌شود. اما به دلیل کوچک بودن نیروی نگهدارنده و روانکاری، تأثیر اصطکاک بر تنشهای شعاعی  و محیطی  بسیار ناچیز است. بنابراین برای یک آهنگ کرنش


ثابت برای حالت تعادل پایدار در جزء کوچک، با توجه به شکل ( 41 ) و معادل بودن تنشهای ذکر شده با تنشهای اصلی رابطة زیر را می‌توان نوشت:

 

 

از طرفی به دلیل کوچک بودن زاویة  ، رابطة  برقرار است.

بنابراین رابطة قبل به صورت زیر ساده می‌شود:

و یا:

 

 وطبق معیار تسلیم ترسکا:

                                                                

بنابراین رابطه بالا به صورت زیر در می‌آید:

 

 

با ثابت فرض کردن تنش تسلیم Y  :

 

در کشش سرد، با توجه به اینکه تنش تسلیم Y در اثر تغییر شکل سرد افزایش می‌یابد، می‌توان حد متوسط تنش تسلیم  را جایگزین Y در رابطة  بالا نمود. بنابراین نیروی کشش از رابطة زیر به دست می‌آید:

 

در این رابطه  سطح مقطع جدارة قطعة در حال کشش است که باید نیروی کشش را تحمل کند. این رابطه نشان می‌دهد که با ازدیاد تغییر شکل به طور پیوسته افزایش و  کاهش می‌یابد و  بیشترین مقدار را در آغاز تغییر شکل به ازای  دارد، بنابراین:

 

در این رابطه  ضخامت و  قطر ورق اولیه،  قطر سنبه و  تنش سیلان متوسط می‌باشند. با فرض ثابت باقی ماندن ضخامت، حالت تغییر شکل دو بعدی فرض شده و بنابراین رابطه را می‌توان به صورت زیر نوشت:

 

برای محاسبة نیروی کشش برای قطعة تو خالی با جدارة نسبتاً ضخیم بهتر است از رابطه زیر استفاده شود:

 

حد کشش با استفاده از رابطة ، قابل محاسبه است. با فرض اینکه حداکثر تنش کششی قابل تحمل برای جدارة قطعه می‌تواند برابر استحکام کششی مادة فلزی قطعه باشد و چنانچه تنش از این حد فراتر رود، نازک شدن موضعی شروع و نهایتاً ورق پاره می‌شود. بنابراین:

                       یا             

برای مادة همگن این نسبت برابر واحد است، بنابراین:

 

نسبت  به عنوان حد کشش در کشش عمیق نامیده شده است. از رابطه حداکثر مقدار  برابر 7/2  است که این مقدار، به دلیل صرفظر نمودن از اصطکاک و اثر خمکاری، مقدار واقعی نیست و عملاً مقدار  کمتر از 7/2 است. این نسبت برای ورقهای فولادی با قابلیت کشش عمیق بسیار خوب حدود 2 است و در شرایط مناسب می‌تواند به 3/2 برسد.

زیبل و پانک نین رابطة زیر را برای محاسبه کل نیروی سنبه در کشش عمیق و تعیین نیروی اسمی دستگاه ارائه دادند:

 

فشار نگهدارنده طبق رابطة ارائه شدة زیر توسط زیبل و بایس وِنگر محاسبه می‌شود:

تا

در این رابطه Rm  استحکام شکست ورق و rM ، شعاع لبة منفذ قالب است.

دررابطه کل نیروی لازم برای تغییر شکل از حاصل جمع نیروی تغییر شکل همگن و نیروهای مورد نیاز برای غلبه بر اصطکاک در فصل مشترک بین ورق و سطح قالب و نگهدارنده، بین خمش لبه و بدنة قالب و ورق به دست آمده است.


اما همانگونه که قبلاً اشاره شد، به دلیل اینکه نیروی نگهدارنده به دلیل وجود اصطکاک بر کل نیروی کشش تأثیر می‌گذارد، باید اندازه آن نیرو با استفاده از وسایل و تجهیزات مکانیکی، هیدورلیکی یا بادی در حین فرایند در محدودة الاستیکی نگهداشته شود. از معادلة می‌توان چنین برداشت کرد که نیروی لازم برای کشش عمیق نه فقط به استحکام تغییر شکل یا نتش سیلان  و نسبت قطر اولیة ورق به قطر سنبه ، بلکه به نسبت قطر سنبه به ضخامت ورق، ، نیز بستگی دارد، شکل (42 ). منحنی سیلان یا تنش ـ کرنش اغلب فولادهای غیر آلیاژی و میکروآلیاژی  برای کرنشهای کوچکتر از واحد با تقریب نسبتاً خوبی می‌تواند توسط رابطه زیر توصیف شود:

 

در این رابطه c ضریب ثابتی است که به ماهیت ماده بستگی دارد. چنانچه منحنی سیلان در مختصات لگاریتمی رسم شود، منحنی به صورت خطی درمی‌آید که شیب این خط معادل توان کار سختی یا سختی کرنشی n است،  شکل  ( 43 ). n علاوه بر اینکه شیب منحنی  را مشخص می‌کند کمیتی برای کرنش یکنواخت نیز محسوب می‌شود  کرنش تا لحظه ایجاد گلویی است. )

بررسیهای انجام گرفته توسط پژوهشگران مختلف نشان می‌دهد که تأثیر n بر نسبت حد کشش  در کشش عمیق، چندان زیاد و قابل ملاحظه نیست، در صورتی که در کشش ورق باکاهش ضخامت (کشش دو محوری ) تأثیر n قابل ملاحظه است و با افزایش مقدار n  خط تغییر شکل موضعی کاهش یافته و به این ترتیب تمایل به نازک شدن موضعی کاهش می‌یابد. عموماً حد کشش  به نسبت قطر سنبه به ضخامت ورق، ، بستگی دارد. باافزایش این نسبت حد کشش کاهش می‌یابد، شکل (42 ). البته مقدار کاهش به جنس ورق بستگی دارد. مقدار متوسط  ، موقعی که  باشد، به 2 می‌رسد. اما معمولاً برای  به مقادیر بزرگتری از حد کشش می‌توان دست یافت. عامل مؤثر دیگر برای افزایش حد کشش، روانکاری است. روانکاری فقط برای آن قسمت از ورق که بین قالب و نگهدارنده قرار گرفته است، انجام می‌شود. همچنین شعاع لبة کف سنبه و شعاع لبه قالب بر حد کشش تأثیر دارد. حد کشش  را می‌توان با حرارت دادن موضعی ورق ( قسمتی که بین قالب و نگهدارنده قرار دارد ) و همزمان با آن خنک کردن موضعی ( قسمت کشیده شده) افزایش داد. اما عیب این روش، پایین آمدن مقدار تولید، به دلیل زمان مورد نیاز برای گرم و خنک کردن موضعی ورق، است. گاهی این روش برای فلزات سبک، به دلیل دمای تبلور مجدد پایین، به کار می‌رود.

نمودار حد تغییر شکل در کشش عمیق:

در تغییر شکل پلاستیکی عموماً ثابت باقی ماندن حجم و در کشش عمیق ثابت ماندن تقریبی سطح خارجی و ضخامت ورق فرض شده است. عملاً چگونگی تغییر شکل در کشش عمیق را می‌توان به کمک خطوط مشبکی شکل ویژه‌ای، که روی سطح ورق از طریق یکی از روشهای مکانیکی، الکتروشیمیایی و فتوشیمیایی ترسیم می‌شود، شکل (44)، تجزیه و تحلیل نمود. نوع دایره‌ای شکل آن برای اندازه‌گیری و محاسبه بسیار راحت‌تر است، زیرا دایره‌ها در تغییر شکل به بیضی تغییر می‌یابند که قطرها یا محورهای اصلی آنها اندازه و جهت کرنشهای اصلی را نشان می‌دهند. اندازة هر دو قطر بیضی‌ها اندازه‌گیری می‌شود و کرنشهای اصلی، ترجیحاً حقیقی، محاسبه می‌شوند. و با استفاده از رابطة حجم ثابت می‌توان کرنش در جهت سوم را نیز به دست آورد . مقادیر مربوط به بیضی‌هایی که در آنها نازکی موضعی یا شکست رخ داده است، شرایط تخریب را مشخص می‌کنند، در حالی که بیضی‌ها یا دایره‌هایی که به اندازة یک یا چند قطر از این ناحیة شکست فاصله دارند به عنوان  قابل قبول یا سالم تلقی می‌شوند، شکل ( 45 ). با تعیین موقعیت نقاط مختلف مربوط به کرنشهای اصلی  نمونه‌های مختلف، نمودار حد تغییر شکل به دست می‌آید. شکل ( 46 ). حد تغییر شکل سالم را برای یک فولاد کم کربن در کشش عمیق نشان می‌دهد.

شکل ( 47 ) نمودار حد تغییر شکل را ، از لحاظ ارتباط با کرنشهای اصلی  و  ، برای حالتهای مختلف کشش، که در آنها مادة فلزی ورق به علت نازک شدگی موضعی یا تشکیل ترک، مردود شناخته می‌شود، نمایان می‌سازد. با مقایسة توزیع تغییر شکل در قطعة کشیده شدة مورد نظر با حد منحنی مربوطه می‌توان مواضع بحرانی را شناسایی نمود.

نمودارهای حد تغییر شکل ورقها برای تشخیص مسئله علمی و ماهیتی در فرایند شکل دهی ورق بسیار مفیدند. برای تعیین نمودارهای حد تغییر شکل اغلب علاوه بر استفاده از نتایج روشهای آزمایشی، از نتایج به دست آمده از قطعات تولیدی مردود شناخته شده نیز استفاده می‌شود. روشهای آزمایشی شامل آزمایش کشش عمیق با سنبه‌های مختلف الشکل، همچنین آزمایش کشش با نمونة شیاردار است.


دانلود با لینک مستقیم


مقاله روش المان محدود در طراحی قالب های فلزی

مساله حل شده اجزا محدود به زبان متلب - مساله شماره ده - تحلیل پوسته با المان چهار ضلعی

اختصاصی از اینو دیدی مساله حل شده اجزا محدود به زبان متلب - مساله شماره ده - تحلیل پوسته با المان چهار ضلعی دانلود با لینک مستقیم و پر سرعت .

مساله حل شده اجزا محدود به زبان متلب - مساله شماره ده - تحلیل پوسته با المان چهار ضلعی


مساله حل شده اجزا محدود به زبان متلب - مساله شماره ده - تحلیل پوسته با المان چهار ضلعی

*** بی نظیرترین کد تحلیل پوسته با المان چهار ضلعی***

کد مساله پوسته به زبان متلب (Matlab).

کاملترین مساله حل شده اجزا محدود مربوط به پوسته با المان دلخواه چهار ضلعی.

سورس کد بسیار تمیز، خوانا و مرتب.

طراحی سورس کد به صورت داینامیک که قابلیت حل هر گونه پوسته با چهار ضلعی را برای شما مهیا می سازد.

قابلیت حل هر گونه پوسته با المان چهار ضلعی دلخواه.

رسم دیاگرام تغییر شکل آن به صورت رنگی (مانند نرم افزار Etabs).

به همراه نمونه پوسته های تحلیل شده به صورت دستی و مقایسه نتایج با نتایج برنامه.


دانلود با لینک مستقیم


مساله حل شده اجزا محدود به زبان متلب - مساله شماره ده - تحلیل پوسته با المان چهار ضلعی